Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010505    DOI: 10.1088/1674-1056/23/1/010505
GENERAL Prev   Next  

Lyapunov function as potential function:A dynamical equivalence

Yuan Ruo-Shi (袁若石)a b, Ma Yi-An (马易安)c, Yuan Bo (苑波)d, Ao Ping (敖平)b e
a School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
b Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China;
c Department of Applied Mathematics, University of Washington, Seattle 98195, USA;
d Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
e Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  For a physical system, regardless of time reversal symmetry, a potential function serves also as a Lyapunov function, providing convergence and stability information. In this paper, the converse is constructively proved that any dynamics with a Lyapunov function has a corresponding physical realization: a friction force, a Lorentz force, and a potential function. Such construction establishes a set of equations with physical meaning for Lyapunov function and suggests new approaches on the significant unsolved problem namely to construct Lyapunov functions for general nonlinear systems. In addition, a connection is found that the Lyapunov equation is a reduced form of a generalized Einstein relation for linear systems, revealing further insights of the construction.
Keywords:  Lyapunov function      potential function      stochastic process      generalized Einstein relation  
Received:  20 March 2013      Revised:  16 May 2013      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB529200) and the National Natural Science Foundation of China (Grant Nos. 61073087 and 91029738).
Corresponding Authors:  Yuan Ruo-Shi     E-mail:  yrs12345@sjtu.edu.cn

Cite this article: 

Yuan Ruo-Shi (袁若石), Ma Yi-An (马易安), Yuan Bo (苑波), Ao Ping (敖平) Lyapunov function as potential function:A dynamical equivalence 2014 Chin. Phys. B 23 010505

[1] Lyapunov A M 1992 Int. J. Control 55 531
[2] Hirsch M W and Smale S 1974 Differential Equations, Dynamical Systems, and Linear Algebra (San Diego: Academic Press)
[3] Johansson M and Rantzer A 1998 IEEE Trans. Autom. Control 43 555
[4] Sastry S 1999 Nonlinear Systems: Analysis, Stability, and Control (New York: Springer-Verlag)
[5] Papachristodoulou A and Prajna S 2002 Proceedings of the 41st IEEE Conference on Decision and Control, December 10–13, 2002 Las Vegas, USA, p. 3482
[6] Haddad W M and Chellaboina V S 2008 Nonlinear Dynamical Systems and Control: A Lyapunov-based Approach (Princeton: Princeton University Press)
[7] Strogatz S H 2000 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Reading: Perseus Books)
[8] La Salle J P 1976 The Stability of Dynamical Systems (Philadelphia: Society for Industrial and Applied Mathematics)
[9] Scheffer M, Carpenter S, Foley J A, Folke C and Walker B 2001 Nature 413 591
[10] Field R J and Noyes R M 1974 J. Chem. Phys. 60 1877
[11] Frauenfelder H, Sligar S G and Wolynes P G 1991 Science 254 1598
[12] Zdravković S and Satarić M V 2006 Chin. Phys. Lett. 23 65
[13] Wang J, Xu L and Wang E K 2008 Proc. Natl. Acad. Sci. USA 105 12271
[14] Ao P 2009 J. Genet. Genomics 36 63
[15] Qian H 2010 J. Stat. Phys. 141 990
[16] Wang J and Verkhivker G M 2003 Phys. Rev. Lett. 90 188101
[17] Ge H and Qian H 2009 Phys. Rev. Lett. 103 148103
[18] Yan G, Ren J, Lai Y C, Lai C H and Li B 2012 Phys. Rev. Lett. 108 218703
[19] Liang X S 2013 Physica D 248 1
[20] Maschke B, Ortega R and van der Schaft A J 2000 IEEE Trans. Autom. Control 45 1498
[21] Wang Y Z, Li C W and Cheng D Z 2003 Automatica 39 1437
[22] Freidlin M I and Wentzell A D 2012 Random Perturbations of Dynamical Systems (3rd edn.) (New York: Springer Verlag)
[23] Tél T and Lai Y C 2010 Phys. Rev. E 81 056208
[24] Ao P 2004 J. Phys. A 37 25
[25] Ao P 2008 Commun. Theor. Phys. 49 1073
[26] Zhu X M, Yin L, Hood L and Ao P 2004 Funct. Integr. Genomics 4 188
[27] Bechhoefer J 2005 Rev. Mod. Phys. 77 783
[28] Gong Y W, Song Y R and Jiang G P 2013 Chin. Phys. B 22 040204
[29] Tang Y, Yuan R S and Ma Y A 2013 Phys. Rev. E 87 012708
[30] Wang J, Hui G T and Xie X P 2013 Chin. Phys. B 22 030206
[31] McLachlan R I, Quispel G R W and Robidoux N 1998 Phys. Rev. Lett. 81 2399
[32] Ao P, Chen T Q and Shi J H 2013 Chin. Phys. Lett. 30 070201
[33] Einstein A 1905 Ann. Phys. (Leipzig) 17 549
[34] Yuan R S and Ao P 2012 J. Stat. Mech. 2012 P07010
[35] Yuan R S, Wang X A, Ma Y A, Yuan B and Ao P 2013 Phys. Rev. E 87 062109
[36] Kubo R 1966 Rep. Prog. Phys. 29 255
[37] Liu F, Luo Y P, Huang M C and Ou-Yang Z C 2009 J. Phys. A 42 332003
[38] Zhu X M, Yin L and Ao P 2006 Int. J. Mod. Phys. B 20 817
[39] Kwon C, Ao P and Thouless D J 2005 Proc. Natl. Acad. Sci. USA 102 13029
[40] Xu W, Yuan B and Ao P 2011 Chin. Phys. Lett. 28 050201
[41] Ma Y A, Tan Q J, Yuan R S, Yuan B and Ao P 2012 arXiv:1208.1654
[1] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[2] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[3] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
[4] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[5] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[6] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[7] Stability analysis of a simple rheonomic nonholonomic constrained system
Chang Liu(刘畅), Shi-Xing Liu(刘世兴), Feng-Xing Mei(梅凤翔). Chin. Phys. B, 2016, 25(12): 124501.
[8] Two kinds of generalized gradient representationsfor holonomic mechanical systems
Feng-Xiang Mei(梅凤翔) and Hui-Bin Wu(吴惠彬). Chin. Phys. B, 2016, 25(1): 014502.
[9] Stochastic stability of the derivative unscented Kalman filter
Hu Gao-Ge (胡高歌), Gao She-Sheng (高社生), Zhong Yong-Min (种永民), Gao Bing-Bing (高兵兵). Chin. Phys. B, 2015, 24(7): 070202.
[10] Stability and performance analysis of a jump linear control system subject to digital upsets
Wang Rui (王蕊), Sun Hui (孙辉), Ma Zhen-Yang (马振洋). Chin. Phys. B, 2015, 24(4): 040201.
[11] Current and efficiency of Brownian particles under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydıner. Chin. Phys. B, 2015, 24(4): 040501.
[12] Skew-gradient representation of generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(10): 104502.
[13] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[14] Modified 2CLJDQP model and the second virial coefficients for linear molecules
Zhang Ying (张颖), Wang Sheng (王升), He Mao-Gang (何茂刚). Chin. Phys. B, 2014, 23(12): 125101.
[15] Global dynamics of a novel multi-group model for computer worms
Gong Yong-Wang (巩永旺), Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平). Chin. Phys. B, 2013, 22(4): 040204.
No Suggested Reading articles found!