Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 124501    DOI: 10.1088/1674-1056/25/12/124501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Stability analysis of a simple rheonomic nonholonomic constrained system

Chang Liu(刘畅)1,2, Shi-Xing Liu(刘世兴)1, Feng-Xing Mei(梅凤翔)3
1. College of Physics, Liaoning University, Shenyang 110036, China;
2. State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China;
3. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  

It is a difficult problem to study the stability of the rheonomic and nonholonomic mechanical systems. Especially it is difficult to construct the Lyapunov function directly from the differential equation. But the gradient system is exactly suitable to study the stability of a dynamical system with the aid of the Lyapunov function. The stability of the solution for a simple rheonomic nonholonomic constrained system is studied in this paper. Firstly, the differential equations of motion of the system are established. Secondly, a problem in which the generalized forces are exerted on the system such that the solution is stable is proposed. Finally, the stable solutions of the rheonomic nonholonomic system can be constructed by using the gradient systems.

Keywords:  nonholonomic constrained system      stabillity      gradient system      Lyapunov function  
Received:  16 July 2016      Revised:  12 August 2016      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11272050, 11202090, 11472124, 11572034, and 11572145), the Science and Technology Research Project of Liaoning Province, China (Grant No. L2013005), China Postdoctoral Science Foundation (Grant No. 2014M560203), and the Doctor Start-up Fund in Liaoning Province of China (Grant No. 20141050).

Corresponding Authors:  Shi-Xing Liu     E-mail:  liushixing@lnu.edu.cn

Cite this article: 

Chang Liu(刘畅), Shi-Xing Liu(刘世兴), Feng-Xing Mei(梅凤翔) Stability analysis of a simple rheonomic nonholonomic constrained system 2016 Chin. Phys. B 25 124501

[1] Neimark J I and Fufaev N A 1972 Dynamics of Nonholonomic Systems (RI:Am. Math. Soc.)
[2] Rumyantzev V V 1967 Appl. Math. Mech. 31 261 (in Russian)
[3] Karapetyan A V 1975 Appl. Math. Mech. 39 1135 (in Russian)
[4] Bloch A M 1992 Automatica 28 431
[5] Zhu H P and Mei F X 1998 Adv. Mech. 28 17 (in Chinese)
[6] Lou Z M and Mei F X 2012 Acta Phys. Sin. 61 024502 (in Chinese)
[7] Zhang J R, RACHID A and Zhang Y 2008 Acta Mech. Sin. 24 463
[8] Guo Y X, Liu S X, Liu C, et al. 2009 Phys. Lett. A 373 3915
[9] Zhang Y, Zhang J R and Xu S J 2012 Acta Mech. Sin. 28 1479
[10] Ding H and Chen L Q 2010 J. Sound Vib. 329 3484
[11] Guo Y X, Liu C, Liu S X, et al. 2010 Sci. China Ser. G:Phys. Mech. Astron. 53 1707
[12] Liu C, Liu S X and Guo Y X 2011 Sci. China-Tch. Sci. 54 2100
[13] Ding H, Chen L Q and Yang S P 2012 J. Sound Vib. 331 2426
[14] Chen X W, Zhao G L and Mei F X 2013 Nonlinear Dyn. 73 579
[15] Fu J L, Chen LQ Xue Y and Luo S K 2002 Acta Phys. Sin. 51 2683 (in Chinese)
[16] Fu J L, Chen L Q and Xue Y 2003 Acta Phys. Sin. 52 256 (in Chinese)
[17] Xu W, Yuan B and Ao P 2011 Chin. Phys. Lett. 28 050201
[18] Hirsch M W and Smale S 1974 Differential Equations, Dynamical Systems, and Linear Algebra (New York:Springer-Verlag)
[19] Mei F X and Wu H B 2013 Acta Phys. Sin. 62 214501 (in Chinese)
[20] Mei F X and Wu H B 2015 Chin. Phys. B 24 104502
[21] Wu H B and Mei F X 2015 Acta Phys. Sin. 64 234501 (in Chinese)
[22] Mei F X and Wu H B 2016 Chin. Phys. B 25 014502
[1] An application of a combined gradient system to stabilize a mechanical system
Xiang-Wei Chen(陈向炜), Ye Zhang(张晔), Feng-Xiang Mei(梅凤翔). Chin. Phys. B, 2016, 25(10): 100201.
[2] Two kinds of generalized gradient representationsfor holonomic mechanical systems
Feng-Xiang Mei(梅凤翔) and Hui-Bin Wu(吴惠彬). Chin. Phys. B, 2016, 25(1): 014502.
[3] Bifurcation for the generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(5): 054501.
[4] Skew-gradient representation of generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(10): 104502.
[5] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[6] Lyapunov function as potential function:A dynamical equivalence
Yuan Ruo-Shi (袁若石), Ma Yi-An (马易安), Yuan Bo (苑波), Ao Ping (敖平). Chin. Phys. B, 2014, 23(1): 010505.
[7] Global dynamics of a novel multi-group model for computer worms
Gong Yong-Wang (巩永旺), Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平). Chin. Phys. B, 2013, 22(4): 040204.
[8] Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters
Li Fan (李凡), Wang Chun-Ni (王春妮), Ma Jun (马军). Chin. Phys. B, 2013, 22(10): 100502.
[9] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Han Yue-Lin(韩月林), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2012, 21(5): 050201.
[10] Synchronization of spatiotemporal chaos in complex networks via backstepping
Chai Yuan(柴元), LŰ Ling(吕翎), and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(3): 030506.
[11] Stability analysis of nonlinear Roesser-type two-dimensional systems via homogenous polynomial technique
Zhang Tie-Yan (张铁岩), Zhao Yan (赵琰), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2012, 21(12): 120503.
[12] Comments on “The feedback control of fractional order unified chaotic system”
Elham Amini Boroujeni and Hamid Reza Momeni . Chin. Phys. B, 2011, 20(9): 090508.
[13] Stability of piecewise-linear models of genetic regulatory networks
Lin Peng(林鹏), Qin Kai-Yu(秦开宇), and Wu Hai-Yan(吴海燕) . Chin. Phys. B, 2011, 20(10): 108701.
[14] Robust H control of piecewise-linear chaotic systems with random data loss
Zhang Hong-Bin(张洪斌), Yu Yong-Bin(于永斌), and Zhang Jian(张健). Chin. Phys. B, 2010, 19(8): 080509.
[15] Linear-control-based synchronisation of coexisting attractor networks with time delays
Song Yun-Zhong(宋运忠). Chin. Phys. B, 2010, 19(6): 060513.
No Suggested Reading articles found!