Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 094101    DOI: 10.1088/1674-1056/22/9/094101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A double constrained robust capon beamforming based imaging method for early breast cancer detection

Xiao Xia (肖夏), Xu Li (徐立), Li Qin-Wei (李钦伟)
School of Electronic Information Engineering, Tianjin University, Tianjin 300072, China
Abstract  Ultra-wideband (UWB) microwave images are proposed for detecting small malignant breast tumors based on the large contrast of electric parameters between a malignant tumor and normal breast tissue. In this study, an antenna array composed of 9 antennas is applied to the detection. The double constrained robust capon beamforming (DCRCB) algorithm is used for reconstructing the breast image due to its better stability and high signal-to-interference-plus-noise ratio (SINR). The successful detection of a tumor of 2 mm in diameter shown in the reconstruction demonstrates the robustness of the DCRCB beamforming algorithm. This study verifies the feasibility of detecting small breast tumors by using the DCRCB imaging algorithm.
Keywords:  ultra wideband      early breast cancer detection      double constrained robust capon beamforming algorithm      antenna array  
Received:  06 January 2013      Revised:  01 February 2013      Accepted manuscript online: 
PACS:  41.20.-q (Applied classical electromagnetism)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
  02.70.Bf (Finite-difference methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61271323) and the Open Project from State Key Laboratory of Millimeter Waves, China (Grant No. K200913).
Corresponding Authors:  Xiao Xia     E-mail:  xiaxiao@tju.edu.cn

Cite this article: 

Xiao Xia (肖夏), Xu Li (徐立), Li Qin-Wei (李钦伟) A double constrained robust capon beamforming based imaging method for early breast cancer detection 2013 Chin. Phys. B 22 094101

[1] Xu X H and Li H 2008 Acta Phys. Sin. 57 4623 (in Chinese)
[2] Liu G D and Zhang Y R 2011 Acta Phys. Sin. 60 4303 (in Chinese)
[3] Bond E J, Li X, Hagness S C and Van Veen B D 2003 IEEE Trans. Antennas Propag. 51 1690
[4] Winters D W, Bond E J and Hagness S C 2006 IEEE Trans. Antennas Propag. 54 3517
[5] Klemm M, Leendertz J A, Gibbins D, Graddock I J, Preece A and Benjamin R 2009 IEEE Antennas Wirel. Propag. Lett. 8 1349
[6] Fear E C, Hagness S C, Meaney P M, Okoniewski M and Stuchly M A 2002 IEEE Microwave Mag. 3 48
[7] Meaney P M, Fanning M W, Li D, Poplack S P and Paulsen K D 2000 Microwave Theory Tech. 48 1841
[8] XiaoX and Kikkawa T 2008 Appl. Surf. Sci. 255 597
[9] Xiao X and Kikkawa T 2008 Jpn. J. Appl. Phys. 47 3209
[10] FearE Cand Stuchly M A 2000 IEEE Trans. Microwave Theory Tech. 48 1854
[11] Berenger J P 1994 J. Comput. Phys. 114 185
[12] Berenger J P 1996 J. Comput. Phys. 127 363
[13] Gedney S D 1996 IEEE Trans. Antennas. Propag. 44 1630
[14] Li X and Hagness S C 2001 IEEE Microwave Compon. Lett. 11 130
[15] Xiao X and Kikkawa T 2008 International Conference on Microwave and Millimeter Wave Technology, April 21-24, 2008 Nanjing, China, p. 1707
[16] Stoica P, Wang Z S and Li J 2003 IEEE Signal Processing Lett.10 172
[17] Guo B, Wang Y and Li J 2006 J. Electromagnetic Waves Appl. 20 53
[18] Li J, Stoica P and Wang Z S 2004 IEEE Trans. Signal Processing 52 2407
[19] Young J L 1995 IEEE Trans. Antennas Propag. 43 422
[1] Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array
Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军). Chin. Phys. B, 2018, 27(11): 114101.
[2] Design of multi-band metasurface antenna array with low RCS performance
Si-Ming Wang(王思铭), Jun Gao(高军), Xiang-Yu Cao(曹祥玉), Yue-Jun Zheng(郑月军), Tong Li(李桐), Jun-Xiang Lan(兰俊祥), Liao-Ri Ji-Di(吉地辽日). Chin. Phys. B, 2018, 27(10): 104102.
[3] Decoupling technique of patch antenna arrays with shared substrate by suppressing near-field magnetic coupling using magnetic metamaterials
Zhaotang Liu(柳兆堂), Jiafu Wang(王甲富), Shaobo Qu(屈绍波), Jieqiu Zhang(张介秋), Hua Ma(马华), Zhuo Xu(徐卓), Anxue Zhang(张安学). Chin. Phys. B, 2017, 26(4): 047301.
[4] Electromagnetic coupling reduction in dual-band microstrip antenna array using ultra-compact single-negative electric metamaterials for MIMO application
Xiao-Long Fu(付孝龙), Guo-Cheng Wu(吴国成), Wei-Xiong Bai(白渭雄), Guang-Ming Wang(王光明), Jian-Gang Liang(梁建刚). Chin. Phys. B, 2017, 26(2): 024101.
[5] Design of ultra wideband microwave absorber effectual for objects of arbitrary shape
Gong Yuan-Xun (宫元勋), Zhou Zhong-Xiang (周忠祥), Jiang Jian-Tang (姜建堂), Zhao Hong-Jie (赵宏杰). Chin. Phys. B, 2015, 24(12): 124101.
[6] Performance of superconducting nanowire single-photon detector with the fan coupling antenna array
Wang Yu-Jue (王玉珏), Ding Tian (丁天), Ma Hai-Qiang (马海强), Jiao Rong-Zhen (焦荣珍). Chin. Phys. B, 2014, 23(6): 060308.
[7] Theoretical analysis of ion cyclotron range of frequency antenna array for HT-7U
Zhang Xin-Jun (张新军), Qin Cheng-Ming (秦成明), Zhao Yan-Ping (赵燕平). Chin. Phys. B, 2005, 14(11): 2251-2255.
No Suggested Reading articles found!