Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 055203    DOI: 10.1088/1674-1056/22/5/055203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Numerical study of physical properties of resistive wall modes in tokamaks

Xia Xin-Nian (夏新念), Liu Yue (刘悦), Liu Chao (刘超), He Yu-Ling (何玉玲), Xia Guo-Liang (夏国良)
Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology) Ministry of Education, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  The effect of the plasma with toroidal rotation on the resistive wall modes in tokamaks is studied numerically. An eigenvalue method is adopted to calculate the growth rate of the modes for changing plasma resistivity and plasma density distribution, as well as the diffusion time of magnetic field through the resistive wall. It is found that the resistive wall mode can be suppressed by the toroidal rotation of the plasma. Also, the growth rate of the resistive wall mode decreases when the edge plasma density is the same as the core plasma density, but it changes only slightly with the plasma resistivity.
Keywords:  tokamak      resistive wall mode      toroidal rotation      plasma density distribution  
Received:  30 March 2012      Revised:  31 August 2012      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.Tn (Ideal and resistive MHD modes; kinetic modes)  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275041, 11105065, 11095015 and 10675029) and the National Basic Research Program of China (Grant Nos. 2008CB717801, 2008CB787103, 2009GB105004, and 2010GB106002).
Corresponding Authors:  Liu Yue     E-mail:  liuyue@dlut.edu.cn

Cite this article: 

Xia Xin-Nian (夏新念), Liu Yue (刘悦), Liu Chao (刘超), He Yu-Ling (何玉玲), Xia Guo-Liang (夏国良) Numerical study of physical properties of resistive wall modes in tokamaks 2013 Chin. Phys. B 22 055203

[1] Strait E J 1994 Phys. Plasmas 1 1415
[2] Gimblett C G 1986 Nucl. Fusion 26 617
[3] Freidberg J P 1987 Ideal Magnetohyhdrodynamics (New York: Plenum Press) p. 481
[4] Bondeson A and Ward D J 1994 Phys. Rev. Lett. 72 2709
[5] Ward D J and Bondeson A 1995 Phys. Plasmas 2 1570
[6] Chu M S, Greene J M, Jensen T H, Miller R L, Bondeson A, Johnson R W and Mauel M E 1995 Phys. Plasmas 2 2236
[7] Chu M S and Okabayashi M 2010 Plasma Phys. Controlled Fusion 52 123001
[8] Betti R and Freidberg J P 1995 Phys. Rev. Lett. 74 2949
[9] Cui S Y, Wang X G and Liu Y 2006 Phys. Plasmas 13 094506
[10] Liu Y Q, Bondeson A, Fransson C M, Lennartson B and Breitholtz C 2000 Phys. Plasmas 7 3681
[11] Fransson C M, Lennartson B, Breitholtz C, Bondeson A and Liu Y Q 2000 Phys. Plasmas 7 4143
[12] Li L, Liu Y and Liu Y Q 2012 Phys. Plasmas 19 012502
[13] Sato M and Nakajima N 2006 Phys. Plasmas 13 102507
[14] Reimerdes H, Garofalo A M, Jackson G L, Okabayashi M, Strait E J, Chu M S, In Y, La Haye R J, Lanctot M J, Liu Y Q, Navratil G A, Solomon W M, Takahashi H and Groebner R J 2007 Phys. Rev. Lett. 98 055001
[15] Li L and Liu Y 2012 Chin. Phys. Lett. 29 075204
[16] Cui S Y, Lu G M and Liu Y 2012 J. Plasma Phys. 78 501
[17] Li L, Liu Y, Xu X Y and Xia X N 2012 Plasma Sci. Technol. 14 14
[18] Hao G Z, Liu Y Q, Wang A K, Jiang H B, Lu G, He H D and Qiu X M 2011 Phys. Plasmas 18 032513
[19] Hao G Z, Wang A K, Liu Y Q and Qiu X M 2011 Phys. Rev. Lett. 107 015001
[20] Hao G Z, Liu Y Q, Wang A K and Qiu X M 2012 Phys. Plasmas 19 032507
[21] Bondeson A, Vlad G and Lutjens H 1992 Phys. Fluids B 4 1889
[22] Liu Y Q, Chu M S, Chapman I T and Hender T C 2008 Phys. Plasmas 15 112503
[23] Wesson J A 2004 Tokamaks (Oxford: Clarendon Press) p. 749
[1] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[2] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[3] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[4] Observation of trapped and passing runaway electrons by infrared camera in the EAST tokamak
Yong-Kuan Zhang(张永宽), Rui-Jie Zhou(周瑞杰), Li-Qun Hu(胡立群), Mei-Wen Chen(陈美文), Yan Chao(晁燕), Jia-Yuan Zhang(张家源), and Pan Li(李磐). Chin. Phys. B, 2021, 30(5): 055206.
[5] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[6] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[7] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[8] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[9] Fast parallel Grad-Shafranov solver for real-time equilibrium reconstruction in EAST tokamak using graphic processing unit
Yao Huang(黄耀), Bing-Jia Xiao(肖炳甲), Zheng-Ping Luo(罗正平). Chin. Phys. B, 2017, 26(8): 085204.
[10] Energetic-ion excited internal kink modes with weak magnetic shear in q0 >1 tokamak plasmas
Wen-Ming Chen(陈文明), Xiao-Gang Wang(王晓钢), Xian-Qu Wang(王先驱), Rui-Bin Zhang(张瑞斌). Chin. Phys. B, 2017, 26(8): 085201.
[11] Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration
Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林). Chin. Phys. B, 2017, 26(6): 065201.
[12] A divertor plasma configuration design method for tokamaks
Yong Guo(郭勇), Bing-Jia Xiao(肖炳甲), Lei Liu(刘磊), Fei Yang(杨飞), Yuehang Wang(汪悦航), Qinglai Qiu (仇庆来). Chin. Phys. B, 2016, 25(11): 115201.
[13] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
[14] Start-up phase plasma discharge design of a tokamak via control parameterization method
Guo Shan (郭珊), Xu Ke (许珂), Xu Chao (许超), Ren Zhi-Gang (任志刚), Xiao Bing-Jia (肖炳甲). Chin. Phys. B, 2015, 24(3): 035202.
[15] Simulations of the L–H transition dynamics with different heat and particle sources
Li Hui-Dong (李会东), Wang Zhan-Hui (王占辉), Jan Weiland, Feng Hao (冯灏), Sun Wei-Guo (孙卫国). Chin. Phys. B, 2015, 24(11): 115204.
No Suggested Reading articles found!