Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 044205    DOI: 10.1088/1674-1056/22/4/044205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

330-W single-frequency retrievable multi-tone monolithic fiber amplifier

Wang Xiao-Lin (王小林), Zhou Pu (周朴), Leng Jin-Yong (冷进勇), Du Wen-Bo (杜文博), Xu Xiao-Jun (许晓军)
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  A single-frequency retrievable phase modulated multi-tone fiber amplifier is presented in theory and demonstrated in experiment. A multi-tone seed laser generated by a sine wave phase modulated single-frequency laser is employed for stimulated Brillouin scattering suppression in all-fiber amplifier. A demodulation signal which is π phase shifted with respect to the modulation signal is used to retrieve the single-frequency laser from the multi-tone laser. In experiment, we first optimize the all-fiber master-oscillator power-amplifier. With this amplifier, we demonstrate a single-frequency retrievable multi-tone laser with 330-W output when driven by the multi-tone seed, while the ultimate output power is only 130 W when driven by the single-frequency laser. Then, we carry out an experiment for retrieving single-frequency laser from the amplified multi-tone laser. Results indicate that the single-frequency laser can be retrieved with a sideband suppression of more than 20 dB. Retrieving an even higher power single-frequency laser is possible if a high power demodulator is available.
Keywords:  single-frequency laser      multi-tone amplifier      phase modulation and demodulation  
Received:  30 June 2012      Revised:  22 August 2012      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the New Century Excellent Talents in University, Ministry of Education of China and the Scientific Research Project in National University Defense of Technology.
Corresponding Authors:  Wang Xiao-Lin     E-mail:  wxllin@nudt.edu.cn

Cite this article: 

Wang Xiao-Lin (王小林), Zhou Pu (周朴), Leng Jin-Yong (冷进勇), Du Wen-Bo (杜文博), Xu Xiao-Jun (许晓军) 330-W single-frequency retrievable multi-tone monolithic fiber amplifier 2013 Chin. Phys. B 22 044205

[1] Gray S, Liu A, Walton D T, Wang J, Li M, Chen X, Boh A R, Demeritt J A and Zenteno L A 2007 Opt. Express 15 17044
[2] Li J, Duan K, Wang Y, Zhao W, Zhu J and Guo Y 2008 IEEE Photon. Tech. Lett. 20 888
[3] Wang X L, Zhou P, Ma Y X, Ma H, Xu X J, Liu Z J and Zhao Y 2010 Chin. Phys. B 19 094201
[4] Xue Y H, He B, Zhou J, Li Z, Fan Y Y, Qi Y F, Liu C, Yuan Z, Zhang H and Lou Q H 2011 Chin. Phys. Lett. 28 054211
[5] Jianfeng L and Jackson S D 2011 Chin. Phys. B 20 034201
[6] Wang X L, Ma Y X, Zhou P, He B, Xue Y H, Liu C, Li Z, Xiao H, Xu X J, Zhou J, Liu Z J and ZhaoY J 2011 Chin. Phys. B 20 114201
[7] Dajani I, Zeringue C and Shay T 2009 IEEE J. Sel. Top. Quantum Electron 15 406
[8] Zeringue C, Vergien C and Dajani I 2011 Opt. Lett. 36 618
[9] Xiao H, Dong X L, Zhou P, Xu X J and Zhao G M 2012 Chin. Phys. B 21 034201
[10] Leigh M, Shi W, Zong J, Yao Z, Jiang S and Peyghambarian N 2008 Appl. Phys. Lett. 92 181108
[11] Brown D C and Hoffman H J 2001 IEEE J. Quantum Electron. 37 207
[12] Liu A P 2007 Opt. Express 15 977
[13] Weβels P, Adel P, Auerbach M, Wandt D and Fallnich C 2004 Opt. Express 12 4443
[14] Wang X L, Leng J Y, Xiao H, Ma Y X, Zhou P, Du W B, Xu X J, Liu Z J and Zhao Y J 2011 Opt. Lett. 36 1338
[15] Zhang Z, Wu J, Xu K, Hong X and Lin J 2009 Opt. Express 17 17200
[16] Liu Y, Lü Z, Dong Y and Li Q 2009 Chin. Opt. Lett. 7 29
[17] Rhein S, Schmidt O, Zimer H, Schreiber T, Eberhardt R and Tünnermann A 2011 Proc. SPIE 7914 1
[18] Hill K O, Johnson D C, Kawasaki B S and Macdonald R I 1978 J. Appl. Phys. 49 5098
[19] Brés C, Zlatanovic S, Wiberg A O J and Radic S 2011 Opt. Express 19 B621
[20] Shibata N, Braun R and Waarts R 1987 IEEE J. Quantum Electron. 23 1205
[21] Agrawal G P 2005 Nonlinear Fiber Optics (Beijing: Beijing World Publishing Corporation) p. 367
[22] Newport Inc. DC-250 MHz Electro-Optic Phase Modulators [EB/OL]. 2007 http://search.newport.com/?q=*&x2=sku&q2=4063-M
[23] Yu C X, Augst S J, Redmond S M, Goldizen K C, Murphy D V, Sanchez A and Fan T Y 2011 Opt. Lett. 36 2686
[1] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[4] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[5] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[6] Single-frequency distributed Bragg reflector Tm:YAG ceramic derived all-glass fiber laser at 1.95 μm
Guo-Quan Qian(钱国权), Min-Bo Wu(吴敏波), Guo-Wu Tang(唐国武), Min Sun(孙敏),Dong-Dan Chen(陈东丹), Zhi-Bin Zhang(张志斌), Hui Luo(罗辉), and Qi Qian(钱奇). Chin. Phys. B, 2022, 31(12): 124205.
[7] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[8] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[9] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[10] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[11] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[12] All-fiber erbium-doped dissipative soliton laser with multimode interference based on saturable-reserve saturable hybrid optical switch
Xin Zhao(赵鑫), Renyan Wan(王仁严), Weiyan Li(李卫岩), Liang Jin(金亮), He Zhang(张贺), Yan Li(李岩), Yingtian Xu(徐英添), Linlin Shi(石琳琳), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(6): 064215.
[13] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[14] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[15] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
No Suggested Reading articles found!