Please wait a minute...
Chinese Physics, 2006, Vol. 15(8): 1871-1878    DOI: 10.1088/1009-1963/15/8/040

Landau damping of collective modes in a harmonically trapped Bose--Einstein condensate

Ma Xiao-Dong(马晓栋)a,b), Zhou Yu(周昱)a), Ma Yong-Li(马永利)c), and Huang Guo-Xiang(黄国翔)a)
a Department of Physics and Institute of Theoretical Physics, East China Normal University, Shanghai 200062, China; Department of Physics, Xinjiang Normal University, Urumchi 830054, China; c Department of Physics, Fudan University, Shanghai 200433, China
Abstract  This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically trapped Bose--Einstein condensate. Based on the divergence-free analytical solutions for ground-state wavefunction of the condensate and eigenvalues and eigenfunctions for thermally excited quasiparticles, obtained beyond Thomas--Fermi approximation, this paper calculates the coupling matrix elements describing the interaction between the collective mode and the quasiparticles. With these analytical results this paper evaluates the Landau damping rate of a monopole mode in a spherical trap and discusses its dependence on temperature, particle number and trapping frequency of the system.
Keywords:  Bose--Einstein condensation      collective modes      Landau damping  
Received:  26 February 2006      Revised:  20 March 2006      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Nature Science Foundation of China (Grant Nos 90403008 and 10434060), and State Key Development Program for Basic Research of China (Grant No 2005CB724508).

Cite this article: 

Ma Xiao-Dong(马晓栋), Zhou Yu(周昱), Ma Yong-Li(马永利), and Huang Guo-Xiang(黄国翔) Landau damping of collective modes in a harmonically trapped Bose--Einstein condensate 2006 Chinese Physics 15 1871

[1] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[2] Collective modes of Weyl fermions with repulsive S-wave interaction
Xun-Gao Wang(王勋高), Huan-Yu Wang(王寰宇), Jiang-Min Zhang(张江敏), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(11): 117201.
[3] Relaxation dynamics of Kuramoto model with heterogeneous coupling
Tianwen Pan(潘天文), Xia Huang(黄霞), Can Xu(徐灿), Huaping Lü(吕华平). Chin. Phys. B, 2019, 28(12): 120503.
[4] Analysis of Landau damping in radially inhomogeneous plasma column
H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir. Chin. Phys. B, 2018, 27(5): 055203.
[5] Landau damping in a dipolar Bose-Fermi mixture in the Bose-Einstein condensation (BEC) limit
S M Moniri, H Yavari, E Darsheshdar. Chin. Phys. B, 2016, 25(12): 126701.
[6] Landau damping in a bounded magnetized plasma column
H. Zakeri-Khatir, F. M. Aghamir. Chin. Phys. B, 2015, 24(2): 025201.
[7] Landau damping and frequency-shift of a quadrupole mode in a disc-shaped rubidium Bose-Einstein condensate
Rahmut Arzigul (阿孜古丽·热合木提), Peng Sheng-Qiang (彭胜强), Ma Xiao-Dong (马晓栋). Chin. Phys. B, 2014, 23(9): 090311.
[8] Effect on Landau damping rates for non-Maxwellian distribution function consisting of two electron populations
M. N. S. Qureshi, S. Sehar, H. A. Shah, J. B. Cao. Chin. Phys. B, 2013, 22(3): 035201.
[9] Nonlinear Landau damping of high frequency waves in non-Maxwellian plasmas
M. N. S. Qureshi, Sumbul Sehar, J. K. Shi, H. A. Shah. Chin. Phys. B, 2013, 22(11): 115201.
[10] Landau damping of collective mode in a quasi-two-dimensional repulsive Bose–Einstein condensate
Ma Xiao-Dong(马晓栋), Yang Zhan-Jin(杨占金), Lu Jun-Zhe(路俊哲), and Wei Wei(魏蔚). Chin. Phys. B, 2011, 20(7): 070307.
[11] Landau damping of longitudinal oscillation in ultra- relativistic plasmas with nonextensive distribution
Liu San-Qiu (刘三秋), Xiao-Chang (陈小昌). Chin. Phys. B, 2011, 20(6): 065201.
[12] Influence of the virtual photon field on the squeezing properties of atom laser
Zhao Jian-Gang(赵建刚), Sun Chang-Yong(孙长勇), Wen Ling-Hua(文灵华), and Liang Bao-Long(梁宝龙). Chin. Phys. B, 2009, 18(6): 2294-2299.
[13] Variational Monte Carlo analysis of Bose--Einstein condensation in a two-dimensional trap
Zheng Rong-Jie(郑荣杰), Jin Jing(金晶), and Tang Yi(唐翌). Chin. Phys. B, 2006, 15(9): 1960-1964.
No Suggested Reading articles found!