Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050401    DOI: 10.1088/1674-1056/23/5/050401
GENERAL Prev   Next  

Mechanical properties of the thermal equilibrium Friedmann-Robertson-Walker universe model

Wei Yi-Huan (魏益焕), Lan Tian-Bao (兰天葆), Zhang Yue-Zhu (张月竹), Fu Yan-Yan (付妍妍)
Department of Physics, Bohai University, Jinzhou 121000, China
Abstract  The mechanical property of the thermal-equilibrium Friedmann-Robertson-Walker (TEFRW) universe is first studied. The equation of state and the scale factor of the TEFRW universe take the forms of w=w(a;zT) and a=a(a;zT,H0). For the universe consisting of the nonrelativistic matter and the dark energy, the behavior of the dark energy depends on the value of the present-day matter fraction. For the TEFRW universe consisting of N ingredients, the effective temperature is introduced. Lastly, a simple TEFRW universe model is analyzed.
Keywords:  TEFRW universe      dark energy      effective temperature  
Received:  20 August 2013      Revised:  10 October 2013      Accepted manuscript online: 
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.62.+v (Quantum fields in curved spacetime)  
Fund: Project supported by the National Natural Science Foundation of China and the Liaoning Education Committee of China (Grant No. 2009A036).
Corresponding Authors:  Wei Yi-Huan     E-mail:  weiyihuan@263.net
About author:  04.70.Dy; 04.62.+v

Cite this article: 

Wei Yi-Huan (魏益焕), Lan Tian-Bao (兰天葆), Zhang Yue-Zhu (张月竹), Fu Yan-Yan (付妍妍) Mechanical properties of the thermal equilibrium Friedmann-Robertson-Walker universe model 2014 Chin. Phys. B 23 050401

[1] Riess A G, Filippenko A V and Challis P 1998 Astron. J. 116 1009
[2] Perlmutter S, Aldering G and Goldhaber G 1999 Astrophys. J. 517 565
[3] Riess A G, Strolger L G and Tonry J 2004 Astrophys. J. 607 665
[4] Cunha J V 2009 Phys. Rev. D 79 047301
[5] Cunha J V and Lima J A S 2008 Mon. Not. Roy. Astron. Soc. 390 210
[6] Davis T M, Mörtsell E and Sollerman J 2007 Astrophys. J. 666 716
[7] Astier P, Guy J and Regnault N 2006 Astron. Astrophys. 447 31
[8] Gardner C L 2005 Nucl. Phys. B 707 278
[9] Qiang Y and Zhang T J 2006 Mod. Phys. Lett. A 21 75
[10] Ishida E E O, Reis R R R, Toribio A V and Waga I 2008 Astropart. Phys. 28 547
[11] Bousso R 2005 Phys. Rev. D 71 064024
[12] Wang B, Gong Y G and Abdalla E 2006 Phys. Rev. D 74 083520
[13] Bernabei R, Belli P and Cappella F 2008 Euro. Phys. J. C 56 333
[14] Aalseth C E, Barbeau P S and Bowden N S 2011 Phys. Rev. Lett. 106 131301
[15] Aprile E, Arisaka K and Arneodo F 2011 Phys. Rev. Lett. 107 131302
[16] Gong Y, Wang B and Wang A 2007 J. Cosmol. Astropart. Phys. 0701 024
[17] Feng L and Lu T 2011 J. Cosmol. Astropart. Phys. 11 034
[18] Komatsu E, Dunkley J and Nolta M R 2009 Astrophys. J. Suppl. 180 330
[19] Alam U, Sahni V and Starobinsky A A 2004 J. Cosmol. Astropart. Phys. 0406 008
[20] Wu P U and Yu H W 2006 Phys. Lett. B 643 315
[21] Caldwell R R 2002 Phys. Lett. B 545 23
[22] Wang W F, Shui Z W and Tang B 2010 Chin. Phys. B 19 119801
[23] Lü J B, Xu L X, Liu M L and Gui Y X 2009 Chin. Phys. B 18 1711
[24] Lima J A S and Pereira S H 2008 Phys. Rev. D 78 083504
[25] Lima J A S and Alcaniz J S 2004 Phys. Lett. B 600 191
[26] Banks T, Fischler W and Mannelli L 2005 Phys. Rev. D 71 123514
[1] Quadratic interaction effect on the dark energy density in the universe
Derya G Deveci, Ekrem Aydiner. Chin. Phys. B, 2017, 26(10): 109501.
[2] New initial condition of the new agegraphic dark energy model
Li Yun-He (李云鹤), Zhang Jing-Fei (张敬飞), Zhang Xin (张鑫). Chin. Phys. B, 2013, 22(3): 039501.
[3] Thermodynamic properties of Reissner–Nordström–de Sitter quintessence black holes
Wei Yi-Huan (魏益焕), Ren Jun (任军). Chin. Phys. B, 2013, 22(3): 030402.
[4] Constraints on the unified model of dark matter and dark energy
Lü Jian-Bo(吕剑波), Wu Ya-Bo(吴亚波), Xu Li-Xin(徐立昕), and Wang Yu-Ting(王钰婷) . Chin. Phys. B, 2011, 20(7): 079801.
[5] Extending a release-and-recapture scheme to single atom optical tweezer for effective temperature evaluation
He Jun(何军), Yang Bao-Dong(杨保东), Zhang Tian-Cai(张天才), and Wang Jun-Min(王军民). Chin. Phys. B, 2011, 20(7): 073701.
[6] Growth of linear matter perturbations and current observational constraints
Fu Xiang-Yun(付响云), Wu Pu-Xun(吴普训), and Yu Hong-Wei(余洪伟). Chin. Phys. B, 2010, 19(7): 079801.
[7] Exact solution of phantom dark energy model
Wang Wen-Fu(王文福), Shui Zheng-Wei(税正伟), and Tang Bin(唐斌). Chin. Phys. B, 2010, 19(11): 119801.
[8] Reconstructing dark energy potentials from parameterized deceleration parameters
Wang Yu-Ting(王钰婷), Xu Li-Xin(徐立昕), Lü Jian-Bo(吕剑波), and Gui Yuan-Xing(桂元星) . Chin. Phys. B, 2010, 19(1): 019801.
[9] New agegraphic dark energy as a rolling tachyon
Cui Jing-Lei(崔晶磊),Zhang Li(张莉), Zhang Jing-Fei(张敬飞), and Zhang Xin(张鑫) . Chin. Phys. B, 2010, 19(1): 019802.
[10] Effects of dark energy interacting with massive neutrinos and dark matter on universe evolution
Chen Ju-Hua(陈菊华) and Wang Yong-Jiu(王永久). Chin. Phys. B, 2010, 19(1): 010401.
[11] Observational constraints on the accelerating universe in the framework of a 5D bounce cosmological model
Lü Jian-Bo(吕剑波), Xu Li-Xin(徐立昕), Liu Mo-Lin(刘墨林), and Gui Yuan-Xing(桂元星). Chin. Phys. B, 2009, 18(4): 1711-1720.
[12] Influence of dark energy on time-like geodesic motion in Schwarzschild spacetime
Chen Ju-Hua(陈菊华) and Wang Yong-Jiu(王永久). Chin. Phys. B, 2008, 17(4): 1184-1188.
[13] The double Lagrangian with U(1, J) symmetry and its applications to the cosmology
Wu Ya-Bo(吴亚波), Lü Jian-Bo(吕剑波), He Jing(贺敬), and Fu Ming-Hui(付明慧). Chin. Phys. B, 2007, 16(12): 3560-3565.
[14] Dynamics of quintessential inflation
Zhai Xiang-Hua(翟向华) and Zhao Yi-Bin(赵一斌). Chin. Phys. B, 2006, 15(10): 2465-2469.
No Suggested Reading articles found!