Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 124702    DOI: 10.1088/1674-1056/22/12/124702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel

Khaled S. Mekheimera b, Soliman R. Komyc, Sara I. Abdelsalamd
a Mathematics & Statistics Department, Faculty of Science, Taif University, Hawia (888) Taif, Saudi Arabia;
b Department of Mathematics, Faculty of Science (Men), Al-Azhar University, Nasr City, Cairo, Egypt;
c Department of Mathematics, Faculty of Science, Helwan University, Cairo, Egypt;
d Basic Science Department, Faculty of Engineering, The British University in Egypt, Al-Shorouk City, Misr-Suez Desert Road, P. O. Box 43, Cairo 11837, Egypt
Abstract  Peristaltic motion induced by a surface acoustic wave of a viscous, compressible and electrically conducting Maxwell fluid in a confined parallel-plane microchannel through a porous medium is investigated in the presence of a constant magnetic field. The slip velocity is considered and the problem is discussed only for the free pumping case. A perturbation technique is employed to analyze the problem in terms of a small amplitude ratio. The phenomenon of a “backward flow” is found to exist in the center and at the boundaries of the channel. In the second order approximation, the net axial velocity is calculated for various values of the fluid parameters. Finally, the effects of the parameters of interest on the mean axial velocity, the reversal flow, and the perturbation function are discussed and shown graphically. We find that in the non-Newtonian regime, there is a possibility of a fluid flow in the direction opposite to the propagation of the traveling wave. This work is the most general model of peristalsis created to date with wide-ranging applications in biological, geophysical and industrial fluid dynamics.
Keywords:  peristaltic flow      Maxwell fluid      porous medium      slip flow      microchannel  
Received:  06 February 2013      Revised:  05 May 2013      Accepted manuscript online: 
PACS:  47.40.-x (Compressible flows; shock waves)  
  47.45.Gx (Slip flows and accommodation)  
  47.56.+r (Flows through porous media)  
  52.30.Cv (Magnetohydrodynamics (including electron magnetohydrodynamics))  
Corresponding Authors:  Sara I. Abdelsalam     E-mail:  sara.abdelsalam@bue.edu.eg, siabdelsalam@yahoo.com

Cite this article: 

Khaled S. Mekheimer, Soliman R. Komy, Sara I. Abdelsalam Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel 2013 Chin. Phys. B 22 124702

[1] Beil F W, Wixforth A and Blick R H 2002 Physica E 13 473
[2] Chu K H W 2000 Meccanica 35 69
[3] Esashi M, Minami K and Ono T 1998 Condens. Matter News 6 31
[4] Mekheimer Kh S and Abdel–Wahab A N 2011 Inc. Numer. Methods Partial Diff. Eq. 27 621
[5] Zhang C B, Chen Y P, Shi M H, Fu P P and Wu J F 2009 Acta Phys. Sin. 58 7050 (in Chinese)
[6] Chu K H W 2001 Eur. Phys. J. Appl. 13 147
[7] Chu K H W 2002 Phys. Scr. 65 283
[8] Chu K H W and Fang J 2000 Eur. Phys. J. B 16 543
[9] Komvopoulos K 1996 Surface Engineering and Microtribology for Microelectromechanical Systems 200 305
[10] Hayat T, Javed M and Asghar S 2008 Phys. Lett. A 372 5026
[11] Mekheimer Kh S and Abd Elmaboud Y 2008 Phys. Lett. A 372 1657
[12] Mekheimer Kh S and Abd Elmaboud Y 2008 Physica A 387 2403
[13] Mekheimer Kh S and Abd Elmaboud Y 2008 J. Appl. Bionic Biomech. 5 47
[14] Ali N, Hayat T and Asghar S 2009 Chaos, Solitons and Fractals 39 407
[15] Elkoumy S R, Barakat E S B and Abdelsalam S I 2012 Transp. Porous Med. 94 643
[16] Hayat T, Ali N and Asghar S 2007 Phys. Lett. A 363 397
[17] Mekheimer Kh S 2004 Appl. Math. Comput. 153 763
[18] Elshehawey E F, Sobh A M and Elbarbary E M E 2000 J. Phys. Soc. Jpn. 69 401
[19] Lukashev E A 1993 Kaledney J. 55 109 (in Russian)
[20] Raptis A, Perdikis C and Tzivanidis G 1981 J. Phys. D 14 99
[21] Raptis A and Perdikis C 1983 Int. J. Eng. Sci. 21 1327
[22] Aarts A C T and Ooms G 1998 J. Eng. Math. 34 435
[23] Hayat T, Khan Y, Mekheimer Kh S and Ali N 2010 Inc. Numer. Methods Partial Diff. Eq. 26 345
[24] Mekheimer Kh S 2003 Arab. J. Sci. Eng. 28 183
[25] Mekheimer Kh S 2004 Appl. Math. Comput. 153 763
[26] Mekheimer Kh S and Abdel–Wahab A N 2012 J. Aerospace Eng. 25 660
[27] Fung Y C and Yih C S 1968 J. Appl. Mech. 35 669
[28] Qi Q, Johnson R E and Harris J G 1995 J. Acoust. Soc. Am. 97 1499
[29] Tsiklauri D and Beresnev I 2001 Phys. Rev. E 64 03630
[30] Eldesoky I M and Abdallah A M 2009 13th International Conference on Aerospace Sciences & Aviation Technology (Egypt: Military Technical College)
[1] Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis
Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy. Chin. Phys. B, 2022, 31(8): 084703.
[2] Erratum to “Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel”
Khaled S. Mekheimer, Soliman R. Komy, and Sara I. Abdelsalam. Chin. Phys. B, 2021, 30(9): 099901.
[3] Hydrodynamic binary coalescence of droplets under air flow in a hydrophobic microchannel
Chao Wang(王超), Chao-qun Shen(沈超群), Su-chen Wu(吴苏晨), Xiang-dong Liu(刘向东), Fang-ping Tang(汤方平). Chin. Phys. B, 2019, 28(2): 024702.
[4] Effective transport of passive particles induced by chiral-active particles in microchannel
Yunfeng Hua(华昀峰), Linli He(何林李), Linxi Zhang(章林溪). Chin. Phys. B, 2017, 26(8): 080702.
[5] Existence of a Hartmann layer in the peristalsis of Sisko fluid
Saleem Asghar, Tayyaba Minhas, Aamir Ali. Chin. Phys. B, 2014, 23(5): 054702.
[6] MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions
T. Hayat, M. Imtiaz, A. Alsaedi, R. Mansoor. Chin. Phys. B, 2014, 23(5): 054701.
[7] Dual solutions in boundary layer flow of Maxwell fluid over a porous shrinking sheet
Krishnendu Bhattacharyya, Tasawar Hayat, Ahmed Alsaedi. Chin. Phys. B, 2014, 23(12): 124701.
[8] Variable fluid properties and variable heat flux effects on the flow and heat transfer in a non-Newtonian Maxwell fluid over an unsteady stretching sheet with slip velocity
Ahmed M. Megahed. Chin. Phys. B, 2013, 22(9): 094701.
[9] Effects of rotation and magnetic field on nonlinear peristaltic flow of second-order fluid in an asymmetric channel through a porous medium
A. M. Abd-Alla, S. M. Abo-Dahab, H. D. El-Shahrany. Chin. Phys. B, 2013, 22(7): 074702.
[10] Effects of transpiration on unsteady MHD flow of an upper convected Maxwell (UCM) fluid passing through a stretching surface in the presence of a first order chemical reaction
Swati Mukhopadhyay, M. Golam Arif, M. Wazed Ali Pk. Chin. Phys. B, 2013, 22(12): 124701.
[11] Multi-relaxation time lattice Boltzmann simulation of inertial secondary flow in a curved microchannel
Sun Dong-Ke (孙东科), Xiang Nan (项楠), Jiang Di (姜迪), Chen Ke (陈科), Yi Hong (易红), Ni Zhong-Hua (倪中华). Chin. Phys. B, 2013, 22(11): 114704.
[12] The effects of heat treatment on microfluidic devices fabricated in silica glass by femtosecond lasers
Li Yan(李岩) and Qu Shi-Liang(曲士良) . Chin. Phys. B, 2012, 21(3): 034208.
[13] Imaging properties of a tetra wedge readout
Liu Yong-An (刘永安), Yan Qiu-Rong (鄢秋荣), Sai Xiao-Feng (赛小锋), Wei Yong-Lin (韦永林), Sheng Li-Zhi (盛立志), Yang Hao (杨颢), Hu Hui-Jun (胡慧君), Zhao Bao-Sheng (赵宝升). Chin. Phys. B, 2011, 20(6): 068503.
[14] Borehole guided waves in a non-Newtonian (Maxwell) fluid-saturated porous medium
Cui Zhi-Wen(崔志文), Liu Jin-Xia(刘金霞), Yao Gui-Jin(姚桂锦), and Wang Ke-Xie(王克协). Chin. Phys. B, 2010, 19(8): 084301.
[15] Velocity overshoot of start-up flow for a Maxwellfluid in a porous half-space
Tan Wen-Chang(谭文长). Chin. Phys. B, 2006, 15(11): 2644-2650.
No Suggested Reading articles found!