Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 024702    DOI: 10.1088/1674-1056/28/2/024702

Hydrodynamic binary coalescence of droplets under air flow in a hydrophobic microchannel

Chao Wang(王超)1, Chao-qun Shen(沈超群)1, Su-chen Wu(吴苏晨)2, Xiang-dong Liu(刘向东)1, Fang-ping Tang(汤方平)1
1 School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China;
2 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
Abstract  Based on the volume of fluid (VOF) method, we conduct a numerical simulation to study the hydrodynamic binary coalescence of droplets under air flow in a hydrophobic rectangular microchannel. Two distinct regimes, coalescence followed by sliding motion and that followed by detaching motion, are identified and discussed. Additionally, the detailed hydrodynamic information behind the binary coalescence is provided, based on which a dynamic mechanical analysis is conducted to reveal the hydrodynamic mechanisms underlying these two regimes. The simulation results indicate that the sliding motion of droplets is driven by the drag force and restrained by the adhesion force induced by the interfacial tension along the main flow direction. The detachment (i.e., upward motion) of the droplet is driven by the lift force associated with an aerodynamic lifting pressure difference imposed on the coalescent droplet, and also restrained by the adhesion force perpendicular to the main flow direction. Especially, the lift force is mainly induced by an aerodynamic lifting pressure difference imposed on the coalescent droplet. Two typical regimes can be quantitatively recognized by a regime diagram depending on Re and We. The higher Re and We respectively lead to relatively larger lift forces and smaller adhesion forces acting on the droplet, both of which are helpful to detachment of the coalesced droplet.
Keywords:  droplet      coalescence      sliding      detachment      microchannel  
Received:  13 July 2018      Revised:  25 October 2018      Accepted manuscript online: 
PACS:  47.55.df (Breakup and coalescence) (Contact lines)  
  68.03.-g (Gas-liquid and vacuum-liquid interfaces)  
  68.08.-p (Liquid-solid interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51876184, 51706193, and 51776037), the National Natural Science Foundation of China-NSAF (Grant No. U1530260), the China Postdoctoral Science Foundation (Grant No. 2017M621835), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.17KJB470014), and Jiangsu Planned Projects for Postdoctoral Research Funds, China (Grant No. 1701188B).
Corresponding Authors:  Xiang-dong Liu     E-mail:

Cite this article: 

Chao Wang(王超), Chao-qun Shen(沈超群), Su-chen Wu(吴苏晨), Xiang-dong Liu(刘向东), Fang-ping Tang(汤方平) Hydrodynamic binary coalescence of droplets under air flow in a hydrophobic microchannel 2019 Chin. Phys. B 28 024702

[1] Sharma M M, Chamoun H, Sarma D S H S R and Schechter R S 1992 J. Colloid Interface Sci. 149 121
[2] Orme M 1997 Prog. Energy Combust. Sci. 23 65
[3] Dimitrakopoulos P and Higdon J J L 1997 Phys. Fluids 336 351
[4] Thompson L 1994 J. Colloid Interface Sci. 163 61
[5] Eckmann D M, Cavanagh D P and Branger A B 2001 J. Colloid Interface Sci. 242 386
[6] Wang J, Gao W, Zhang H, Zou M H, Chen Y P and Zhao Y J 2018 Sci. Adv. 4
[7] Cai Y H, Hu J, Ma H P, Yi B L and Zhang H M 2006 J. Power Sources 161 843
[8] Quan P, Zhou B, Sobiesiak A and Liu Z 2005 J. Power Sources 152 131
[9] Peng Q and Lai M C 2007 J. Power Sources 164 222
[10] Proceedings of ASME 2003 1st International Conference on Fuel Cell Science, Engineering and Technology, April 21-23, 2003, Rochester, USA, p. 143
[11] Basu S, Nandakumar K and Masliyah J H 1997 J. Colloid Interface Sci. 190 253
[12] Madani S and Amirfazli A 2014 Colloids Surf. A 441 796
[13] Vananroye A, And P V P and Moldenaers P 2006 Langmuir 22 3972
[14] Akhtar N and Kerkhof P J A M 2011 Int. J. Hydrogen Energy 36 3076
[15] Seevaratnam G, Michel O, Heng J, Ding H, Spelt P and Matar O 2010 Chem. Eng. Sci. 65 4523
[16] Chen Y P, Wu L Y and Zhang C B 2013 Phys. Rev. E 87 013002
[17] Chen Y P, Gao W, Zhang C B and Zhao Y J 2016 Lab Chip 16 1332
[18] Fan J, Wilson M C and Kapur N 2011 J. Colloid Interface Sci. 356 286
[19] Vananroye A, Puyvelde P V and Moldenaers P 2011 Rheol. Acta 50 231
[20] Qi C, Liang L and Rao Z H 2016 Int. J. Heat Mass Transfer 94 316
[21] Sun D K and Bo Z 2015 Int. J. Heat Mass Transfer 80 139
[22] Cho S C, Wang Y and Chen K S 2012 J. Power Sources 206 119
[23] Li Q X, Chai Z H, Shi B C and Liang H 2014 Phys. Rev. E 90 043015
[24] Wang H, Zhang Z Y, Yang Y M, Hu Y and Zhang H S 2008 Chin. Phys. B 17 3847
[25] Wang C Y, Zhang C B, Huang X Y, Liu X D and Chen Y P 2016 Chin. Phys. B 25 108202
[26] Mohammad N H G, Ding H and Spelt P D M 2010 J. Fluid Mech. 644 217
[27] Chen Y P and Deng Z L 2017 J. Fluid Mech. 819 401
[28] Chen F, Hidrovo C, Wang F M, Eaton J and Goodson K 2008 Int. J. Multiphase Flow 34 690
[29] Gupta A K and Basu S 2008 Chem. Eng. Sci. 63 5496
[30] Kang Q J, Zhang D X and Chen S Y 2002 Phys. Fluids 14 3203
[31] Chen Y P, Shen C Q and Peterson G 2015 Ind. Eng. Chem. Res. 54 9257
[32] Chen X P and Pfender E 1983 Plasma Chem. Plasma Process. 3 97
[33] Chen Y P, Zhang C B, Wu R and Shi M H 2011 J. Power Sources 196 6366
[34] Zhang C B, Chen Y P, Wu L Y and Shi M H 2011 Energ. Buildings. 43 3514
[35] Zhang C B, Chen Y P and Shi M H 2010 Chem. Eng. Process. 49 1188
[36] Chen Y P, Zhang C B, Shi M H and Wu J F 2009 Int. Commun. Heat Mass Transfer 36 917
[37] Brackbill J U, Kothe D B and Zemach C 1992 J. Comput. Phys. 100 335
[38] Taha T and Cui Z F 2004 Chem. Eng. Sci. 59 1181
[39] Dr C T, Dr A L Y and Dr J F F 2007 Springer Handbook Experimental Fluid Mechanics (Berlin: Springer) pp. 633-636
[40] Saha A A and Mitra S K 2009 J. Colloid Interface Sci. 339 461
[41] Rosengarten G, Harvie D J E and Cooper-White J 2006 Appl. Math. Model. 30 1033
[42] Chen Y P, Zhang C B, Shi M H and Yang Y C 2010 AIChE J. 56 2018
[43] Youngs D L 1982 Numerical Methods Fluid Dynamics (New York: Academic Press) pp. 273-285
[44] Antonini C, Carmona F J, Pierce E, Marengo M and Amirfazli A 2009 Langmuir 25 6143
[45] Zhang C B, Chen Y P, Wu R and Shi M H 2011 Int. J. Heat Mass Transfer 54 202
[46] Wu J F, Shi M H, Chen Y P and Li X 2010 Int. J. Therm. Sci. 49 922
[1] Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
Zhongyu Shi(石中玉), Guanqing Wang(王关晴), Xiangxiang Chen(陈翔翔), Lu Wang(王路), Ning Ding(丁宁), and Jiangrong Xu(徐江荣). Chin. Phys. B, 2022, 31(5): 054701.
[2] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[3] Erratum to “Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel”
Khaled S. Mekheimer, Soliman R. Komy, and Sara I. Abdelsalam. Chin. Phys. B, 2021, 30(9): 099901.
[4] Numerical simulation on partial coalescence of a droplet with different impact velocities
Can Peng(彭灿), Xianghua Xu(徐向华), and Xingang Liang(梁新刚). Chin. Phys. B, 2021, 30(5): 054703.
[5] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[6] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[7] Effect of the liquid temperature on the interaction behavior for single water droplet impacting on the immiscible liquid
Tiantian Wang(汪甜甜), Changjian Wang(王昌建), Shengchao Rui(芮圣超), and Kai Pan(泮凯). Chin. Phys. B, 2021, 30(11): 116801.
[8] Dielectrowetting actuation of droplet: Theory and experimental validation
Yayan Huang(黄亚俨), Rui Zhao(赵瑞), Zhongcheng Liang(梁忠诚), Yue Zhang(张月), Meimei Kong(孔梅梅), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 106801.
[9] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[10] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[11] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[12] Discharge and flow characterizations of the double-side sliding discharge plasma actuator
Qi-Kun He(贺启坤), Hua Liang(梁华), Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2020, 29(6): 064702.
[13] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[14] Electrohydrodynamic behaviors of droplet under a uniform direct current electric field
Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程). Chin. Phys. B, 2020, 29(3): 034703.
[15] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
No Suggested Reading articles found!