CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Analytical thermodynamical properties of a two-dimensional electron gas in a magnetic field |
Chen Jin-Wang (陈金望), Pan Xiao-Yin (潘孝胤) |
Department of Physics, Ningbo University, Ningbo 315211, China |
|
|
Abstract Analytical expressions for the thermodynamical properties of a two-dimensional electron gas in a perpendicular magnetic field are derived. This is accomplished by first deriving the general expression for the thermodynamical potential, and then employing this result to obtain the corresponding expression for the two-dimensional gas. The chemical potential and magnetization are studied as a function of temperature and magnetic field, and shown to be in agreement with prior work. It is also shown that the results are close to those obtained by assuming a Gaussian density of states for the Landau levels.
|
Received: 12 April 2013
Revised: 06 May 2013
Accepted manuscript online:
|
PACS:
|
75.20.-g
|
(Diamagnetism, paramagnetism, and superparamagnetism)
|
|
71.70.Di
|
(Landau levels)
|
|
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11275100) and the K. C. Wong Magna Foundation of Ningbo University, China. |
Corresponding Authors:
Pan Xiao-Yin
E-mail: panxiaoyin@nbu.edu.cn
|
Cite this article:
Chen Jin-Wang (陈金望), Pan Xiao-Yin (潘孝胤) Analytical thermodynamical properties of a two-dimensional electron gas in a magnetic field 2013 Chin. Phys. B 22 117501
|
[1] |
Shoenberg D 1984 Magnetic Oscillations in Metals (Cambridge: Cambridge University Press)
|
[2] |
de Haas W J and van Alphen P M 1930 Proc. Neth. R. Acad. Sci. 33 1106
|
[3] |
de Haas W J and van Alphen P M 1930 Commun. Phys. Lab. Leiden 208d 212a
|
[4] |
Lifshitz I M and Kosevich A M 1955 Zh. Eksp. Teor. Fiz. 29 730
|
[5] |
Peierls R 1933 Z. Phys. 81 186
|
[6] |
Stormer H L, Haavasoja T, Narayanamurti V, Gossard A C and Wiegmann W 1983 J. Vac. Sci. Technol. B 2 423
|
[7] |
Gornik E, Lassnig R and Strasser G 1985 Phys. Rev. Lett. 54 1820
|
[8] |
Wang J K, Campbell J H, Tsui D C and Cho A Y 1988 Phys. Rev. B 38 6174
|
[9] |
Eisenstein J P, Stormer H L, Narayanamurti V, Cho A Y, Gossard A C and Tu C W 1985 Phys. Rev. Lett. 55 875
|
[10] |
Templeton I M 1988 J. Appl. Phys. 64 3570
|
[11] |
Potts A, Shepherd R, Herrenden-Harker W G, Elliott M, Jones C L, Usher A, Jones G A, Ritchie D A, Linfield E H and Grimshaw M 1996 J. Phys.: Condens. Matter 8 5189
|
[12] |
Wiegers S A J, Specht M, Lévy L P, Simmons M Y, Ritchie D A, Cavanna A, Etienne B, Martinez G and Wyder P 1997 Phys. Rev. Lett. 79 3238
|
[13] |
Meinel I, Hengstmann T, Grundler D and Heitmann D 1999 Phys. Rev. Lett. 82 819
|
[14] |
Harris J G E, Knobel R, Maranowski K D, Gossard A C, Samarth N and Awschalom D D 2001 Phys. Rev. Lett. 86 4644
|
[15] |
Usher A and Elliott M 2009 J. Phys.: Condens. Matter 21 103202
|
[16] |
Vagner I D, Maniv T and Ehrenfreund E 1983 Phys. Rev. Lett. 51 1700
|
[17] |
Vagner I D and Maniv T 1985 Phys. Rev. B 32 8398
|
[18] |
Landau L D 1930 Z. Phys. 64 629
|
[19] |
Zawadzki W 1983 Solid State Commun. 47 317
|
[20] |
Zawadzki W and Lassnig R 1984 Surf. Sci. 142 225
|
[21] |
Zawadzki W 1984 J. Phys. C 17 L145
|
[22] |
Shoenberg D 1984 J. Low Tem. Phys. 56 417
|
[23] |
Wang L and O’Connell R F 1987 Phys. Stat. Sol. (b) 144 781
|
[24] |
Wang L and O’Connell R F 1989 Phys. Stat. Sol. (b) 153 343
|
[25] |
Champel T and Mineev V P 2001 Philos. Mag. B 81 55
|
[26] |
Champel T 2001 Phys. Rev. B 64 054407
|
[27] |
Ishihara A and Kojima D Y 1979 Phys. Rev. B 19 846
|
[28] |
Shiwa Y and Ishihara A 1983 Phys. Rev. B 27 4743
|
[29] |
Sondheimer D and Wilson A H 1951 Proc. Roy. Soc. A 210 173
|
[30] |
Ando T, Flower A B and Stern F 1982 Rev. Mod. Phys. 54 437
|
[31] |
Luttinger J M 1961 Phys. Rev. 121 1251
|
[32] |
Engelsberg S and Simpson G 1970 Phys. Rev. B 2 1657
|
[33] |
Bauer S H 1939 J. Chem. Phys. 7 1097
|
[34] |
Yang W 1988 Phys. Rev. A 38 5504
|
[35] |
Yu B R 1948 J. Exp. Theor. Phys. 18 1081
|
[36] |
van Zyl B P and Hutchinson D A W 2004 Phys. Rev. B 69 024520
|
[37] |
Alexandrov A S and Bratkovsky A M 1996 Phys. Rev. Lett. 76 1308
|
[38] |
SchwarzMP,WildeMA, Groth S, Grundler D, Heyn Ch and Heitmann D 2002 Phys. Rev. B 65 245315
|
[39] |
Fang C, Wang Z G, Li S S and Zhang P 2009 Chin. Phys. B 18 4430
|
[40] |
Fu Z G, Wang Z G, Li S S and Zhang P 2011 Chin. Phys. B 20 058103
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|