Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 104502    DOI: 10.1088/1674-1056/22/10/104502
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion

Fan Kang-Qi (樊康旗), Ming Zheng-Feng (明正峰), Xu Chun-Hui (徐春辉), Chao Feng-Bo (晁锋波)
School of Electronical & Mechanical Engineering, Xidian University, Xi’an 710071, China
Abstract  As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption. The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage.
Keywords:  piezoelectric conversion      mechanical vibration      charging dynamics      electromechanical coupling  
Received:  18 December 2012      Revised:  01 April 2013      Accepted manuscript online: 
PACS:  45.20.dg (Mechanical energy, work, and power)  
  46.70.De (Beams, plates, and shells)  
  68.35.Gy (Mechanical properties; surface strains)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10476019) and the Fundamental Research Funds for the Central Universities (Grant No. K5051304011).
Corresponding Authors:  Fan Kang-Qi     E-mail:  kangqifan@gmail.com

Cite this article: 

Fan Kang-Qi (樊康旗), Ming Zheng-Feng (明正峰), Xu Chun-Hui (徐春辉), Chao Feng-Bo (晁锋波) The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion 2013 Chin. Phys. B 22 104502

[1] Werner-Allen G, Lorincz K, Ruiz M, Marcillo O, Johnson J, Lees J and Welsh M 2006 IEEE Internet Comput. 10 18
[2] Milenković A, Otto C and Jovanov E 2006 Comput. Commun. 29 2521
[3] Wang Z Q, Zhao Y P and Huang Z P 2010 Int. J. Eng. Sci. 48 140
[4] Fan K Q, Jia J Y, Zhu Y M and Zhang X Y 2011 Chin. Phys. B 20 043401
[5] Fan K Q, Wang W D, Zhu Y M and Zhang X Y 2011 Sci. China: Phys. Mech. Astron. 54 1680
[6] Yuse K, Monnier T, Petit L, Lefeuvre E, Richard C and Guyomar D 2008 J. Intell. Mater. Syst. Struct. 19 387
[7] Patricia M, Feng Q and Paul C 2011 Int. J. Sens. Netw. 10 73
[8] Yick J, Mukherjee B and Ghosal D 2008 Comput. Netw. 52 2292
[9] Lin H B, Cao M S, Yuan J, Wang D W, Zhao Q L and Wang F C 2008 Chin. Phys. B 17 4323
[10] Chen Z S and Yang Y M 2011 Acta Phys. Sin. 60 074301 (in Chinese)
[11] Tang L H and Yang Y W 2012 Appl. Phys. Lett. 101 094102
[12] Tang L H, Yang Y W and Soh C K 2012 J. Intell. Mater. Syst. Struct. 23 1433
[13] Sun S and Cao S Q 2012 Acta Phys. Sin. 61 210505 (in Chinese)
[14] Hu Y T, Xue H and Hu H P 2007 Smart Mater. Struct. 16 1961
[15] Stewart M, Weaver P M and Cain M 2012 Appl. Phys. Lett. 100 073901
[16] Xie J M, Yang J S, Hu H P, Hu Y T and Chen X D 2012 J. Intell. Mater. Syst. Struct. 23 135
[17] Shu Y C and Lien I C 2006 Smart Mater. Struct. 15 1499
[18] Renaud M, Karakaya K, Sterken T, Fiorini P, Van Hoof C and Puers R 2008 Sens. Actuators A 145 380
[19] Liang J R and Liao W H 2012 IEEE. T. Ind. Electron. 59 1950
[20] Guan M J and Liao W H 2007 Smart Mater. Struct. 16 498
[21] Lefeuvre E, Badel A, Richard C and Guyomar D 2005 J. Intell. Mater. Syst. Struct. 16 865
[22] Lefeuvre E, Badel A, Benayad A, Lebrun L, Richard C and Guyomar D 2005 J. Phys. IV 128 177
[23] Lefeuvre E, Badel A, Richard C, Petit L and Guyomar D 2006 Sens. Actuators A 126 405
[24] Liu W Q, Feng Z H, He J and Liu R B 2007 Smart Mater. Struct. 16 2130
[25] Hu Y T, Xue H, Hu T and Hu H P 2009 IEEE T. Ultrason. Ferroelectr. Freq. Control 55 148
[26] Ming Z F and Zhou M C 2011 IEEE. T. Ind. Electron. 58 2345
[27] Wu W J, Wickenheiser A M, Reissman T and Garcia E 2009 Smart Mater. Struct. 18 055012
[28] Guan M J and Liao W H 2008 J. Intell. Mater. Syst. Struct. 19 671
[29] Wickenheiser A M, Reissman T, Wu W J and Garcia E 2010 IEEE ASME T. Mech. 15 400
[30] Fang H B, Liu J Q, Xu Z Y, Dong L, Wang L, Chen D, Cai B C and Liu Y 2006 Microelectr. J. 37 1280
[31] Erturk A and Inman D J 2008 J. Vib. Acoust. 130 041002
[32] Erturk A and Inman D J 2008 J. Intell. Mater. Syst. Struct. 19 1311
[33] Benasciutti D, Moro L, Zelenika S and Brusa E 2010 Microsyst. Technol. 16 657
[34] Roundy S and Wright P K 2004 Smart Mater. Struct. 13 1131
[35] Jiang S N, Li X F, Guo S H, Hu Y T, Yang J S and Jiang Q 2005 Smart Mater. Struct. 14 769
[36] Shu Y C and Lien I C 2006 J. Micromech. Microeng. 16 2429
[37] Zhou L, Sun J, Zheng X J, Deng S F, Zhao J H, Peng S T, Zhang Y, Wang X Y and Cheng H B 2012 Sens. Actuators A 179 185
[38] Ajitsaria J, Choe S Y, Shen D and Kim D J 2007 Smart Mater. Struct. 16 447
[39] Ng T H and Liao W H 2005 J. Intell. Mater. Syst. Struct. 16 785
[40] Guyomar D N, Badel A, Lefeuvre E and Richard C 2005 IEEE T. Ultrason. Ferr. 52 584
[41] Ren Q, Zhao Y P, Han L and Zhao H B 2006 Nanotechnology 17 1778
[42] Szarka G D, Stark B H and Burrow S G 2012 IEEE T. Power Electr. 27 803
[43] He C, Chen H, Bai F, Fan Z, Sun L, Xu F, Wang J, Liu Y and Zhu K 2012 J. Appl. Phys. 112 126102
[44] He C, Fu X, Xu F, Wang J, Zhu K, Du C and Liu Y 2012 Chin. Phys. B 21 054207
[45] He C, Chen H, Sun L, Wang J, Xu F, Du C, Zhu K and Liu Y 2012 Crystal Res. Technol. 47 610
[46] He C, Xu F, Wang J, Du C, Zhu K and Liu Y 2011 J. Appl. Phys. 110 083513
[47] He C, Xu F, Wang J and Liu Y 2009 Crystal Res. Technol. 44 211
[1] Theoretical analysis and experimental validation of radial cascaded composite ultrasonic transducer
Xiao-Yu Wang(王晓宇), Zhi-Xin Yu(余芷欣), Jing Hu(胡静), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2021, 30(4): 040701.
[2] Optically manipulated nanomechanics of semiconductor nanowires
Chenzhi Song(宋晨之), Shize Yang(杨是赜), Xiaomin Li(李晓敏), Xiao Li(李晓), Ji Feng(冯济), Anlian Pan(潘安练), Wenlong Wang(王文龙), Zhi Xu(许智), Xuedong Bai(白雪冬). Chin. Phys. B, 2019, 28(5): 054204.
[3] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[4] Stoney formula for piezoelectric film/elastic substrate system
Wang-Min Zhou(周旺民), Wang-Jun Li(李望君), Sheng-Yun Hong(洪圣运), Jie Jin(金杰), Shu-Yuan Yin(尹姝媛). Chin. Phys. B, 2017, 26(3): 037701.
[5] Stability and Hopf bifurcation of a nonlinear electromechanical coupling system with time delay feedback
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Wang Zhao-Long (王兆龙), Li Hai-Bin (李海滨). Chin. Phys. B, 2015, 24(1): 014501.
[6] Bifurcation and chaos analysis of a nonlinear electromechanical coupling relative rotation system
Liu Shuang (刘爽), Zhao Shuang-Shuang (赵双双), Sun Bao-Ping (孙宝平), Zhang Wen-Ming (张文明). Chin. Phys. B, 2014, 23(9): 094501.
[7] Broadband energy harvesting via magnetic coupling between two movable magnets
Fan Kang-Qi (樊康旗), Xu Chun-Hui (徐春辉), Wang Wei-Dong (王卫东), Fang Yang (方阳). Chin. Phys. B, 2014, 23(8): 084501.
[8] Charging dynamics of polymer due to electron irradiation: A simultaneous scattering-transport model and preliminary results
Cao Meng (曹猛), Wang Fang (王芳), Liu Jing (刘婧), Zhang Hai-Bo (张海波). Chin. Phys. B, 2012, 21(12): 127901.
No Suggested Reading articles found!