Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100302    DOI: 10.1088/1674-1056/22/10/100302
GENERAL Prev   Next  

Analytic solutions of the double ring-shaped Coulomb potential in quantum mechanics

Chen Chang-Yuan (陈昌远)a, Lu Fa-Lin (陆法林)a, Sun Dong-Sheng (孙东升)a, Dong Shi-Hai (董世海)b
a School of Physics and Electronics, Yancheng Teachers University, Yancheng 224051, China;
b Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D. F. 07738, Mexico
Abstract  The exact solutions of the Schrödinger equation with the double ring-shaped Coulomb potential are presented, including the bound states, continuous states on the “κ/2π scale”, and the calculation formula of the phase shifts. The polar angular wave functions are expressed by constructing the so-called super-universal associated Legendre polynomials. Some special cases are discussed in detail.
Keywords:  double ring-shaped Coulomb potential      super-universal associated-Legendre polynomial      functional analysis method  
Received:  17 February 2013      Revised:  10 April 2013      Accepted manuscript online: 
PACS:  03.65.Db (Functional analytical methods)  
  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Nk (Scattering theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11275165), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010291), and partly by Secretaria de Investigacióny Posgrado de Instituto Politécnico Nacional, Mexico (Grant No. 20131150-SIP-IPN).
Corresponding Authors:  Chen Chang-Yuan     E-mail:  yctcccy@163.net

Cite this article: 

Chen Chang-Yuan (陈昌远), Lu Fa-Lin (陆法林), Sun Dong-Sheng (孙东升), Dong Shi-Hai (董世海) Analytic solutions of the double ring-shaped Coulomb potential in quantum mechanics 2013 Chin. Phys. B 22 100302

[1] Hartmann H 1972 Theor. Chim. Acta 24 201
[2] Hartmann H, Schuck R and Radtke J 1976 Theor. Chim. Acta 42 1
[3] Hartmann H and Schuck R 1980 Int. J. Quantum Chem. 18 125
[4] Sökmen I 1986 Phys. Lett. A 115 249
[5] Mandal B P 2000 Int. J. Mod. Phys. A 15 1225
[6] Chetouani L, Guechi L and Hammann T F 1987 Phys. Lett. A 125 277
[7] Blado G G 1996 Int. J. Quantum Chem. 58 431
[8] Gerry C C 1986 Phys. Lett. A 118 445
[9] Chetouani L, Guechi L and Hammann T F 1992 J. Math. Phys. 33 3410
[10] Vaidya A N and Boschi Filho H B 1990 J. Math. Phys. 31 1951
[11] Granovskii Y I, Zhedanov A S and Lutzenko I M 1991 J. Phys. A: Math. Gen. 24 3887
[12] Zhedanov A S 1993 J. Phys. A: Math. Gen. 26 4633
[13] Chen C Y, Liu C L and Sun D S 2002 Phys. Lett. A 305 341
[14] Chen C Y, Sun D S and Liu C L 2003 Phys. Lett. A 317 80
[15] Chen C Y, Lu F L and Sun D S 2004 Phys. Lett. A 329 420
[16] Yeşiltaş Ö 2008 Chin. Phys. Lett. 25 1172
[17] Zhang M C 2012 Acta Phys. Sin. 61 240301 (in Chinese)
[18] Lu F L, Zhuang G C and Chen C Y 2006 J. At. Mol. Phys. 23 493 (in Chinese)
[19] Hautot A 1973 J. Math. Phys. 14 1320
[20] Dutra A S and Hott M 2006 Phys. Lett. A 356 215
[21] Berkdemir C 2009 J. Math. Chem. 46 139
[22] Lu F L and Chen C Y 2010 Chin. Phys. B 19 100309
[23] Sun G H and Dong S H 2010 Mod. Phys. Lett. A 25 2849
[24] Zhang M C and Huangfu G Q 2010 Acta Phys. Sin. 59 6819 (in Chinese)
[25] Hassanabadi H, Molaee Z and Zarrinkamar S 2012 Mod. Phys. Lett. A 27 1250228
[26] Bskkeshizadeh S and Vahidi V 2012 Adv. Studies Theor. Phys. 6 733
[27] Falaye B J 2012 Few-Body Syst. 53 563
[28] Arda A and Sever R 2012 J. Math. Chem. 50 1484
[29] Maghsoodi E, Hassanabadi H and Zarrinkamar S 2013 Chin. Phys. B 22 030302
[30] Chen C Y and Hu S Z 1995 Acta Phys. Sin. 44 9 (in Chinese)
[31] Gradshteyn I S and Ryzhik I M 2000 Tables of Integrals, Series, and Products, 6th edn. (New York: Academic Press)
[32] Landau L D and Lifshitz E M 1977 Quantum Mechanics (Non-relativistic Theory), 3rd edn. (New York: Pregamon Press)
[1] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[2] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[3] Numerical investigation on threading dislocation bending with InAs/GaAs quantum dots
Guo-Feng Wu(武国峰), Jun Wang(王俊), Wei-Rong Chen(陈维荣), Li-Na Zhu(祝丽娜), Yuan-Qing Yang(杨苑青), Jia-Chen Li(李家琛), Chun-Yang Xiao(肖春阳), Yong-Qing Huang(黄永清), Xiao-Min Ren(任晓敏), Hai-Ming Ji(季海铭), and Shuai Luo(罗帅). Chin. Phys. B, 2021, 30(11): 110201.
[4] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[5] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[6] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
[7] Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields
M Eshghi, H Mehraban, S M Ikhdair. Chin. Phys. B, 2017, 26(6): 060302.
[8] Testing the validity of the Ehrenfest theorem beyond simple static systems: Caldirola-Kanai oscillator driven by a time-dependent force
Salim Medjber, Hacene Bekkar, Salah Menouar, Jeong Ryeol Choi. Chin. Phys. B, 2016, 25(8): 080301.
[9] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[10] Inverse problem of quadratic time-dependent Hamiltonians
Guo Guang-Jie (郭光杰), Meng Yan (孟艳), Chang Hong (常虹), Duan Hui-Zeng (段会增), Di Bing (邸冰). Chin. Phys. B, 2015, 24(8): 080301.
[11] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[12] Relativistic symmetries of Deng–Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions
Akpan N. Ikot, S. Zarrinkamar, B. H. Yazarloo, H. Hassanabadi. Chin. Phys. B, 2014, 23(10): 100306.
[13] Scattering states of modified Pöschlben–Teller potential in D-dimension
Chen Chang-Yuan(陈昌远), Lu Fa-Lin(陆法林), and You Yuan(尤源) . Chin. Phys. B, 2012, 21(3): 030302.
[14] Asymptotic iteration approach to supersymmetric bistable potentials
H. Ciftci, O. őzer, and P. Roy . Chin. Phys. B, 2012, 21(1): 010303.
[15] Novel uncertainty relations associated with fractional Fourier transform
Xu Guan-Lei(徐冠雷), Wang Xiao-Tong(王孝通), and Xu Xiao-Gang(徐晓刚) . Chin. Phys. B, 2010, 19(1): 014203.
No Suggested Reading articles found!