Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030302    DOI: 10.1088/1674-1056/21/3/030302
GENERAL Prev   Next  

Scattering states of modified Pöschlben–Teller potential in D-dimension

Chen Chang-Yuan(陈昌远), Lu Fa-Lin(陆法林), and You Yuan(尤源)
School of Physics and Electronics, Yancheng Teachers University, Yancheng 224002, China
Abstract  We present a new approximation scheme for the centrifugal term, and apply this new approach to the Schr?dinger equation with the modified P?schl-Teller potential in the D-dimension for arbitrary angular momentum states. The approximate analytical solutions of the scattering states are derived. The normalized wave functions expressed in terms of the hypergeometric functions of the scattering states on the $k/2\pi$ scale and the calculation formula of the phase shifts are given. The numerical results show that our results are in good agreement with those obtained by using the amplitude-phase method (APM).
Keywords:  modified P?schl-Teller potential in D-dimension      Schr?dinger equation      scattering states   
Received:  29 May 2011      Revised:  22 October 2011      Accepted manuscript online: 
PACS:  03.65.Nk (Scattering theory)  
  03.65.Db (Functional analytical methods)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010291).
Corresponding Authors:  Chen Chang-Yuan,yctcccy@163.net     E-mail:  yctcccy@163.net

Cite this article: 

Chen Chang-Yuan(陈昌远), Lu Fa-Lin(陆法林), and You Yuan(尤源) Scattering states of modified Pöschlben–Teller potential in D-dimension 2012 Chin. Phys. B 21 030302

[1] Fl黦ge S 1999 Practical Quantum Mechanics (Berlin: Springer Press)
[2] Carrington T 1990 J. Mol. Phys. 70 757
[3] Iachello F and Oss S 1993 Chem. Phys. Lett. 205 285
[4] Iachello F and Oss S 1993 J. Chem. Phys. 99 7337
[5] Nieto M M 1978 Phys. Rev. A 17 1273
[6] Chen C Y and Hu S Z 1995 Acta Phys. Sin. 44 9 (in Chinese)
[7] Dong S H and Lemus R 2002 Int. J. Quantum Chem. 86 265
[8] Z`u niga J, Alacid M, Requena A and Bastida A 1996 Int. J. Quantum Chem. 57 43
[9] Gomez-Camacho J, Lemus R and Arias J M 2004 J. Phys. A: Math. Gen. 37 5237
[10] Rey M and Michelot F 2009 J. Phys. A: Math. Theor. 42 165209
[11] Dong S H 2011 Wave Equations in Higher Dimensions (Berlin: Springer Press)
[12] Nieto M M 1979 Am. J . Phys. 47 1067
[13] Y? nez R J, Assche W V and Dehesa J S 1994 Phys. Rev. A 50 3065
[14] Liu Y F and Zeng J Y 1997 Science in China A 40 1110
[15] Zeng J Y 2000 Quantum Mechanics (Vol. II, 3rd Edn.) (Beijing: Science Press) Ch. 8 (in Chinese)
[16] Qian Y K and Zeng J Y 1993 Science in China A 36 595
[17] Chen C Y, Sun D S, Liu C L and Lu F L 2003 Acta Phys. Sin. 52 781 (in Chinese)
[18] Louck J D and Schaffer W H 1960 J. Mol. Spec. 4 285
[19] Louck J D 1960 J. Mol. Spec. 4 298;
[20] Chen C Y 2000 Chin. Phys. 9 731
[21] Agboola D 2009 Phys. Scr. 80 065304
[22] Chen C Y, Sun D S, Liu C L and Lu F L 2011 Commun. Theor. Phys. 55 399
[23] Agboola D 2010 Chin. Phys. Lett. 27 040301
[24] Jia C S, Liu J Y and Wang P Q 2008 Phys. Lett. A 372 4779
[25] Qiang W C, Chen W L, Li K and Zhang H P 2009 Inter. J. Mod. Phys. A 24 5523
[26] Wei G F, Chen W L, Wang H Y and Li Y Y 2009 Chin. Phys. B 18 3663
[27] Tacskin F and Koccak G 2010 Chin. Phys. B 19 090314
[28] Qiang W C, Li K and Chen W L 2009 J. Phys. A 42 25306
[29] Sameer M I 2011 Phys. Scr. 83 015010
[30] Qiang W C and Dong S H 2009 Phys. Scr. 79 045004
[31] Landau L D and Lifshitz E M 1977 Quantum Mechanics, Non-Relativistic Theory (3rd Edn.) (Oxford: Pergamon)
[32] Zeng J Y 2000 Quantum Mechanics (Vol. 1, 3rd Edn.) (Beijing: Science Press) Ch. 13 (in Chinese)
[33] Chen C Y, Sun D S and Lu F L 2004 Phys. Lett. A 330 424
[34] Wang Z X and Guo D R 1979 An Introduction to Special Functions (Beijing: Science Press) (in Chinese)
[35] Gradshteyn I S and Ryzhik I M 2000 Tables of Integrals, Series, and Products (6th Edn.) (New York: Academic Press)
[36] Milne W E 1930 Phys. Rev. 35 863
[37] Wheeler J A 1937 Phys. Rev. 52 1123
[38] Thylwe K E 2008 J. Phys. A 41 115304
[39] Thylwe K E 2008 Phys. Scr. 77 065005
[1] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Solitons for the cubic–quintic nonlinear Schrödinger equation with varying coefficients
Chen Yuan-Ming(陈元明), Ma Song-Hua(马松华), and Ma Zheng-Yi(马正义) . Chin. Phys. B, 2012, 21(5): 050510.
[4] Approximate solution for the Klein-Gordon-Schr?dinger equation by the homotopy analysis method
Wang Jia(王佳), Li Biao(李彪), and Ye Wang-Chuan(叶望川). Chin. Phys. B, 2010, 19(3): 030401.
[5] The scattering states of the generalized Hulthén potential with an improved new approximate scheme to the centrifugal term
Wei Gao-Feng(卫高峰), Chen Wen-Li(陈文利), Wang Hong-Ying(王红英), and Li Yuan-Yuan(李院院). Chin. Phys. B, 2009, 18(9): 3663-3669.
[6] Multiphoton ionization of the hydrogen atom exposed to circularly or linearly polarized laser pulses
Wang Pei-Jie(王培杰) and He Feng(何峰). Chin. Phys. B, 2009, 18(12): 5291-5295.
[7] Rotating soliton clusters in nonlocal nonlinear media
Wang Yu-Qing(王玉青) and Guo Qi(郭旗). Chin. Phys. B, 2008, 17(7): 2527-2534.
[8] Exact periodic solution in coupled nonlinear Schrödinger equations
Li Qi-Liang(李齐良), Chen Jun-Lang(陈均朗), Sun Li-Li(孙丽丽), Yu Shu-Yi(余淑毅), and Qian Sheng(钱胜). Chin. Phys. B, 2007, 16(6): 1545-1548.
[9] Direct approach to perturbation theory for bright solitons
Yan Jia-Ren (颜家壬), Ao Sheng-Mei (敖胜美), Yu Hui-You (俞慧友). Chin. Phys. B, 2005, 14(1): 28-32.
[10] Exact solution and exotic coherent soliton structures of the (2+1)-dimensional generalized nonlinear Schrödinger equation
Zheng Chun-Long (郑春龙), Zhang Jie-Fang (张解放), Sheng Zheng-Mao (盛正茂), Huang Wen-Hua (黄文华). Chin. Phys. B, 2003, 12(1): 11-16.
[11] The soliton properties of dipole domains in superlattices
Zhang Qi-Yi (张启义), Tian Qiang (田强). Chin. Phys. B, 2002, 11(8): 809-811.
No Suggested Reading articles found!