ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Improving attosecond pulse reflection by large angle incidence for periodic multilayer mirror in the extreme ultraviolet region |
Lin Cheng-You (林承友), Chen Shu-Jing (陈淑静), Liu Da-He (刘大禾) |
Applied Optics Beijing Area Major Laboratory, Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract The improvement of attosecond pulse reflection by large angle incidence for periodic multilayer mirror in the extreme ultraviolet region has been discussed. Numerical simulations of both spectral and temporal reflection characteristics of periodic multilayer mirrors under various incident angles have been analyzed and compared. It was found that the periodic multilayer mirror under larger incidence angle can provide not only higher integrated reflectivity but also broader reflection band with negligible dispersion, making it possible to obtain better reflected pulse that owns higher pulse reflection efficiency and shorter pulse duration for attosecond pulse reflection. In addition, with increasing of incident angle, the promoting of attosecond pulse reflection capability has been proven for periodic multilayer mirrors with arbitrary layers.
|
Received: 29 August 2012
Revised: 26 September 2012
Accepted manuscript online:
|
PACS:
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
41.50.+h
|
(X-ray beams and x-ray optics)
|
|
42.30.Kq
|
(Fourier optics)
|
|
Corresponding Authors:
Liu Da-He
E-mail: dhliu@bnu.edu.cn
|
Cite this article:
Lin Cheng-You (林承友), Chen Shu-Jing (陈淑静), Liu Da-He (刘大禾) Improving attosecond pulse reflection by large angle incidence for periodic multilayer mirror in the extreme ultraviolet region 2013 Chin. Phys. B 22 014210
|
[1] |
Lan P F, Lu P X, Cao W, Li Y H and Wang X L 2007 Phys. Rev. A 76 011402(R)
|
[2] |
Hong W Y, Lu P X, Li Q G and Zhang Q B 2009 Opt. Lett. 34 2102
|
[3] |
Peng L Y, Gong Q H and Tan F 2009 Chin. Phys. B 18 4807
|
[4] |
He H P and Ge Y C 2010 Chin. Phys. B 19 103302
|
[5] |
Hong W Y, Yang Z Y, Lan P F, Zhang Q B, Li Q G and Lu P X 2009 Acta Phys. Sin. 58 4914 (in Chinese)
|
[6] |
Luo M H and Zhang Q J 2011 Chin. Phys. B 20 085201
|
[7] |
Zhang G T, Bai T T and Zhang M G 2012 Chin. Phys. B 21 054214
|
[8] |
Kienberger R, Goulielmakis E, Uiberacker M, Baltuska A, Yakovlev V, Bammer F, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2004 Nature 427 817
|
[9] |
Hofstetter M, Aquila A, Schultze M, Guggenmos A, Yang S, Gullikson E, Huth M, Nickel B, Gagnon J, Yakovlev V S, Goulielmakis E, Krausz F and Kleineberg U 2011 New J. Phys. 13 063038
|
[10] |
Kienberger R, Hentschel N, Uiberacker M, Spielmann C, Kitzler M, Scrinzi A, Wieland M, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M and Krausz F 2002 Science 297 1144
|
[11] |
Morlens A S, Balcou P, Zeitoun P, Valentin C, Laude V and Kazamias S 2005 Opt. Lett. 30 1554
|
[12] |
Morlens A S, Lopez-Martens R, Boyko O, Zeitoun P, Balcou P, Varju K, Gustafsson E, Remetter T, L'Huillier A, Kazamias S, Gautier J, Delmotte F and Ravet M F 2006 Opt. Lett. 31 1558
|
[13] |
Wonisch A, Neuhausler U, Kabachnik N M, Uphues T, Uiberacker M, Yakovlev V, Krausz F, Drescher M, Kleineberg U and Heinzmann U 2006 Appl. Opt. 45 4147
|
[14] |
Suman M, Frassetto F, Nicolosi P and Pelizzo M G 2007 Appl. Opt. 46 8159
|
[15] |
Hofstetter M, Schultze M, FieB M, Dennhardt B, Guggenmos A, Gagnon J, Yakovlev V S, Goulielmakis E, Kienberger R, Gullikson E M, Krausz F and Kleineberg U 2011 Opt. Express 19 1767
|
[16] |
Bourassin-Bouchet C, de Rossi S, Wang J, Meltchakov E, Giglia A, Mahne N, Nannarone S and Delmotte F 2012 New J. Phys. 14 023040
|
[17] |
Bourassin-Bouchet C, Diveki Z, de Rossi S, English E, Meltchakov E, Gobert O, Guénot D, Carre B, Delmotte F, Saliéres P and Ruchon T 2011 Opt. Express 19 3809
|
[18] |
Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B and Krausz F 2001 Science 291 1923
|
[19] |
Loch R A, Dubrouil A, Sobierajski R, Descamps D, Fabre B, Lidon P, van de Kruijs R W E, Boekhout F, Gullikson E, Gaudin J, Louis E, Bijkerk F, Mevel E, Petit S, Constant E and Mairesse Y 2011 Opt. Lett. 36 3386
|
[20] |
Lin C Y and Liu D H 2012 Chin. Phys. B 21 094216
|
[21] |
Beigman I L, Pirozhkov A S and Ragozin E N 2001 JETP Lett. 74 149
|
[22] |
Beigman I L, Pirozhkov A S and Ragozin E N 2002 J. Opt. A 4 433
|
[23] |
Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 181
|
[24] |
Aquila A L, Salmassi F, Dollar F, Liu Y and Gullikson E 2006 Opt. Express 14 10073
|
[25] |
Attowood D T 2003 Soft X-rays and Extreme Ultraviolet Radiation: Principles and Application (1st edn.) (Beijing: Science Press) p. 61 (in Chinese)
|
[26] |
Hau-Riege A P and Chapman H N 2007 Rev. Sci. Instrum. 78 013104
|
[27] |
Pirozhkov A S, Daido H, Bulanov S V and Ragozin E N 2005 Springer Series in Chemical Physics: Ultrafast Phenomena XIV 79 85
|
[28] |
Underwood J H and Barbee T W 1981 Appl. Opt. 20 3027
|
[29] |
Chen R, Wang F L and Wang Z S 2008 Chin. Opt. Lett. 6 310
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|