Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 018201    DOI: 10.1088/1674-1056/23/1/018201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of metal oxide arrester on the chaotic oscillations in the voltage transformer with nonlinear core loss model using chaos theory

Hamid Reza Abbasia, Ahmad Gholamia, Seyyed Hamid Fathib, Ataollah Abbasib
a Iran University of Science & Technology, Electrical & Electronic Engineering Department, Narmak 1684613144, Tehran, Iran;
b Amirkabir University, Electrical Engineering Department, Tehran 64540, Iran
Abstract  In this paper, controlling chaos when chaotic ferroresonant oscillations occur in a voltage transformer with nonlinear core loss model is performed. The effect of a parallel metal oxide surge arrester on the ferroresonance oscillations of voltage transformers is studied. The metal oxide arrester (MOA) is found to be effective in reducing ferroresonance chaotic oscillations. Also the multiple scales method is used to analyze the chaotic behavior and different types of fixed points in ferroresonance of voltage transformers considering core loss. This phenomenon has nonlinear chaotic dynamics and includes sub-harmonic, quasi-periodic, and also chaotic oscillations. In this paper, the chaotic behavior and various ferroresonant oscillation modes of the voltage transformer is studied. This phenomenon consists of different types of bifurcations such as period doubling bifurcation (PDB), saddle node bifurcation (SNB), Hopf bifurcation (HB), and chaos. The dynamic analysis of ferroresonant circuit is based on bifurcation theory. The bifurcation and phase plane diagrams are illustrated using a continuous method and linear and nonlinear models of core loss. To analyze ferroresonance phenomenon, the Lyapunov exponents are calculated via the multiple scales method to obtain Feigenbaum numbers. The bifurcation diagrams illustrate the variation of the control parameter. Therefore, the chaos is created and increased in the system.
Keywords:  ferroresonance      chaos theory      metal oxide arrester      Lyapunov exponent  
Received:  19 March 2013      Revised:  14 June 2013      Accepted manuscript online: 
PACS:  82.40.Bj (Oscillations, chaos, and bifurcations)  
  95.10.Fh (Chaotic dynamics)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  05.45.-a (Nonlinear dynamics and chaos)  
Corresponding Authors:  Hamid Reza Abbasi     E-mail:  habbasi@iust.ac.ir

Cite this article: 

Hamid Reza Abbasi, Ahmad Gholami, Seyyed Hamid Fathi, Ataollah Abbasi Effect of metal oxide arrester on the chaotic oscillations in the voltage transformer with nonlinear core loss model using chaos theory 2014 Chin. Phys. B 23 018201

[1] Milicevic K and Emin Z 2011 Int. J. Circ. Theory Appl. 41 259
[2] Forsen A and Kristiansson L 1974 Int. J. Circ. Theory Appl. 2 13
[3] Hui M, Zhang Y B and Liu C X 2008 Chin. Phys. B 17 3258
[4] Charalambous C A, Sturgess J P and Wang Z D 2011 IET Gener. Transm. Dis. 5 640
[5] Nikolaidis V C, Milis I and Rizopoulos G 2012 IEEE Trans. Power Del 27 300
[6] Sakarung P and Chatratana S 2005 International Conference on Power Systems Transients, June 2005 Canada, p. 19
[7] Kavasseri R G 2006 Elect. Power Energy Syst. 28 207
[8] Escudero M V, Dudurych I and Redfern M A 2007 Elect. Power Energy Syst. 77 1506
[9] Wornle F, Harrison D K and Zhou C 2005 IEEE Trans. Power Del. 20 191
[10] Emin Z, Al-Zahawi B A T, Tong Y K and Ugur M 2001 IEEE Trans. Circ. Syst. I 48 757
[11] Rezaei-Zare A, Sanaye-Pasand M, Mohseni H, Farhangi Sh and Iravani R 2007 IEEE Trans. Power Del. 22 919
[12] Ben-Tal A, Shein D and Zissu S 1999 Elect. Power Syst. Res. 49 175
[13] Moses P S, Masoum M A S and Toliyat H A 2011 IEEE Trans. Energy Conversion 26 581
[14] Mozaffari S, Sameti M and Soudack A C 1997 IEE Proc. Gen. Trans. Dist. 144 456
[15] Kuznetsov Y A 1998 Elements of Applied Bifurcation Theory (2nd edn.) (New York: Springer Verlag) pp. 1–115
[16] Abbasi H R, Gholami A, Rostami M and Abbasi A 2011 Iranian Journal of Electrical & Electronic Engineering 7 42
[17] Kousaka T, Ueta T, Ma Y and Kawakami H 2005 Int. J. Circ. Theory Appl. 33 263
[18] Tse C K 1994 Int. J. Circ. Theory Appl. 22 263
[19] He S B, Sun K H and Zhu C X 2013 Chin. Phys. B 22 050506
[20] Zhang X D, Liu X D, Zheng Y and Liu C 2013 Chin. Phys. B 22 030509
[21] Chakravarthy S K and Nayar C V 1995 Elect. Power Energy Syst. 17 267
[22] Abbasi A, Radmanesh H, Rostami M and Abbasi H 2009 IEEE Conference of EEEIC09, November 2009 Wroclaw, Poland, p. 97
[23] Abbasi A, Rostami M, Radmanesh H and Abbasi H R 2009 IEEE Conference of EEEIC09, November 2009 Wroclaw, Poland, p. 76
[24] Al Anbari K, Ramanjam R, Keerthiga T and Kuppusamy K 2001 IEE Proc. Gen. Trans. Dist. 148 562
[25] Al Anbarri K, Ramanujam R, Saravanaselvan R and Kuppusamy K 2003 Elect. Power System Res. 65 1
[26] Hui M and Liu C X 2010 Chin. Phys. B 19 120509
[27] Pattanapakdee K and Banmongkol C 2007 International Conference on Power Systems Transients (IPST), June 2007 France, p. 151
[28] Abbasi A, Rostami M, Fathi S H, Abbasi H R and Abdollahi H 2010 Energy Power. Eng. 2 254
[29] Escudero M V, Dudurych I and Redfern M A 2007 Elect. Power Syst. Res. 77 1506
[30] Li N, Yuan H Q, Sun H Y and Zhang Q L 2013 Chin. Phys. B 22 030508
[31] Ben-Tal A, Kirk V and Wake G 2001 IEEE Trans. Power Del. 16 105
[32] Zhang R X and Yang S P 2010 Chin. Phys. B 19 020510
[33] Nayfeh A H 2004 Applied Nonlinear Dynamics Analytical, Computational and Experimental Methods (WILEY-VCH Verlag GmbH & Co. KGaA) pp. 1–225
[34] Hui M, ZhangY B and Liu C X 2009 Chin. Phys. B 18 1787
[35] Tse C K 2003 Complex Behavior of Switching Power Converters (Boca Raton, USA: CRC Press) pp. 1–155
[36] Argyris J, Faust G and Haase M 1994 An Exploration of Chaos (New York: North-Holland)
[1] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[2] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[3] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[4] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[5] Homoclinic and heteroclinic chaos in nonlinear systems driven by trichotomous noise
You-Ming Lei(雷佑铭), Hong-Xia Zhang(张红霞). Chin. Phys. B, 2017, 26(3): 030502.
[6] A study of the early warning signals of abrupt change in the Pacific decadal oscillation
Wu Hao (吴浩), Hou Wei (侯威), Yan Peng-Cheng (颜鹏程), Zhang Zhi-Sen (张志森), Wang Kuo (王阔). Chin. Phys. B, 2015, 24(8): 089201.
[7] A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection
Li Meng-Ping (李梦平), Xu Xue-Mei (许雪梅), Yang Bing-Chu (杨兵初), Ding Jia-Feng (丁家峰). Chin. Phys. B, 2015, 24(6): 060504.
[8] A perturbation method to the tent map based on Lyapunov exponent and its application
Cao Lv-Chen (曹绿晨), Luo Yu-Ling (罗玉玲), Qiu Sen-Hui (丘森辉), Liu Jun-Xiu (刘俊秀). Chin. Phys. B, 2015, 24(10): 100501.
[9] New predication of chaotic time series based on local Lyapunov exponent
Zhang Yong (张勇). Chin. Phys. B, 2013, 22(5): 050502.
[10] Stability of operation versus temperature of a three-phase clock-driven chaotic circuit
Zhou Ji-Chao (周继超), Hyunsik Son, Namtae Kim, Han Jung Song. Chin. Phys. B, 2013, 22(12): 120506.
[11] Controlling and synchronization of a hyperchaotic system based on passive control
Zhu Da-Rui (朱大锐), Liu Chong-Xin (刘崇新), Yan Bing-Nan (燕并男). Chin. Phys. B, 2012, 21(9): 090509.
[12] Forming and implementing a hyperchaotic system with rich dynamics
Liu Wen-Bo(刘文波), Wallace K. S. Tang(邓榤生), and Chen Guan-Rong(陈关荣) . Chin. Phys. B, 2011, 20(9): 090510.
[13] Lyapunov exponent calculation of a two-degree-of-freedom vibro-impact system with symmetrical rigid stops
Li Qun-Hong(李群宏) and Tan Jie-Yan(谭洁燕). Chin. Phys. B, 2011, 20(4): 040505.
[14] The Stochastic stability of a Logistic model with Poisson white noise
Duan Dong-Hai(段东海), Xu Wei(徐伟), Su Jun(苏军), and Zhou Bing-Chang(周丙常). Chin. Phys. B, 2011, 20(3): 030501.
[15] Hyperchaotic behaviours and controlling hyperchaos in an array of RCL-shunted Josephson junctions
Ri Ilmyong(李日明), Feng Yu-Ling(冯玉玲), Yao Zhi-Hai(姚治海), and Fan Jian(范健) . Chin. Phys. B, 2011, 20(12): 120504.
No Suggested Reading articles found!