Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 090201    DOI: 10.1088/1674-1056/21/9/090201
GENERAL   Next  

Perturbation method of studying the EI Niño oscillation with two parameters using delay sea–air oscillator model

Du Zeng-Ji (杜增吉)a, Lin Wan-Tao (林万涛)b, Mo Jia-Qi (莫嘉琪 )c
a School of Mathematical Sciences, Jiangsu Normal University, Xuzhou 221116, China;
b State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamic,Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
c Department of Mathematics, Anhui Normal University, Wuhu 241003, China
Abstract  The EI Niño-southern oscillation (ENSO) is an interannual phenomenon involved in the tropical Pacific ocean-atmosphere interactions. In this paper, we develop an asymptotic method of solving the nonlinear equation using the ENSO model. Based on a class of oscillator of the ENSO model, a approximate solution of the corresponding problem is studied employing the perturbation method.
Keywords:  nonlinear      perturbation method      El Niñ      o-southern oscillation model  
Received:  08 February 2012      Revised:  21 March 2012      Accepted manuscript online: 
PACS:  02.30.Ks (Delay and functional equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11071205 and 11101349), the "Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences, China (Grant No. XDA01020304), the Anhui Provincial Natural Science Foundation from the Education Bureau of Anhui Province, China (Grant No. KJ2011A135), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011042).
Corresponding Authors:  Du Zeng-Ji     E-mail:  duzengji@163.com

Cite this article: 

Du Zeng-Ji (杜增吉), Lin Wan-Tao (林万涛), Mo Jia-Qi (莫嘉琪 ) Perturbation method of studying the EI Niño oscillation with two parameters using delay sea–air oscillator model 2012 Chin. Phys. B 21 090201

[1] McPhaden M J and Zhang D 2002 Nature 415 603
[2] Gu D F and Philander S G H 1997 Science 275 805
[3] Latif M, Sterl A and Maier-Reimer E 1993 J. Climate 6 700
[4] Neelin J D, Latif M and Jin F F 1994 Annu. Rev. Fluid Mech. 26 617
[5] Wang C, Weisberg R H and Virmani J I 1999 J. Geophys. Res. 104 5131
[6] Wang C 2001 Adv. Atmos. Sci. 18 674
[7] Feng G L, Dai X G, Wang A H and Chou J F 2001 Acta Phys. Sin. 50 606 (in Chinese)
[8] Feng G L, Dong W J, Jia X J and Cao H X 2002 Chin. Phys. Sin. 51 1181 (in Chinese)
[9] Liu S K, Fu Z T, Liu S D and Zhao Q 2002 Acta Phys. Sin. 51 10 (in Chinese)
[10] Lin W T and Mo J Q 2004 Chin. Sci. Bull. 48 5
[11] Mo J Q and Lin W T 2004 Acta Phys. Sin. 53 996 (in Chinese)
[12] Mo J Q and Lin W T 2005 Chin. Phys. 14 875
[13] Mo J Q and Lin W T 2008 Chin. Phys. B 17 743
[14] Mo J Q and Lin W T 2005 Acta Math. Appl. Sin. 21 101
[15] Mo J Q, Lin W T and Lin Y H 2009 Chin. Phys. B 18 3624
[16] Mo J Q 2010 Chin. Phys. B 19 010203
[17] Mo J Q, Lin W T and Lin Y H 2011 Chin. Phys. B 20 070205
[18] Xie F, Lin Y H, Lin W T and Mo J Qi 2011 Chin. Phys. B 20 010208
[19] Sagon G 2008 Nonlinearity 21 1183
[20] Hovhannisyan G and Vulanovic R 2008 Nonlinear Stud. 15 297
[21] Barbu L and Cosma E 2009 J. Math. Anal. Appl. 351 392
[22] Ramos M 2009 J. Math. Anal. Appl. 352 246
[23] de Jager E M and Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing Co)
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[6] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[7] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[8] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[9] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[10] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[11] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[12] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[13] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
No Suggested Reading articles found!