CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Homogeneous interface-type resistance switching in Au/La0.67Ca0.33MnO3/SrTiO3/F:SnO2 heterojunction memories |
Zhang Ting(张婷), Ding Ling-Hong(丁玲红), and Zhang Wei-Feng(张伟风)† |
Key Laboratory of Photovoltaic Materials of Henan Province, School of Physics and Electronics, Hènan University, Kaifeng 475004, China |
|
|
Abstract La0.67Ca0.33MnO3 thin films are fabricated on fluorine-doped tin oxide conducting glass substrates by a pulsed laser deposition technique with SrTiO3 used as a buffer layer. The current-voltage characteristics of the heterojunctions exhibit an asymmetric and resistance switching behaviour. A homogeneous interface-type conduction mechanism is also reported using impedance spectroscopy. The spatial homogeneity of the charge carrier distribution leads to field-induced potential-barrier change at the Au-La0.67Ca0.33MnO3 interface and a concomitant resistance switching effect. The ratio of the high resistance state to the low resistance state is found to be as high as 1.3?104% by simulating the AC electric field. This colossal resistance switching effect will greatly improve the signal-to-noise ratio in nonvolatile memory applications.
|
Received: 08 September 2011
Revised: 19 October 2011
Accepted manuscript online:
|
PACS:
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
73.50.Fq
|
(High-field and nonlinear effects)
|
|
72.20.-i
|
(Conductivity phenomena in semiconductors and insulators)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60976016), the Program for Innovative Research Team in Science and Technology in University of Henan Province (IRTSTHN), China (Grant No. 2012IRTSTHN004), and the Research Program of Henan University, China (Grant No. SBGJ090503). |
Corresponding Authors:
Zhang Wei-Feng,wfzhang@henu.edu.cn
E-mail: wfzhang@henu.edu.cn
|
Cite this article:
Zhang Ting(张婷), Ding Ling-Hong(丁玲红), and Zhang Wei-Feng(张伟风) Homogeneous interface-type resistance switching in Au/La0.67Ca0.33MnO3/SrTiO3/F:SnO2 heterojunction memories 2012 Chin. Phys. B 21 047301
|
[1] |
Li Y T, Long S B, Lü H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu M 2011 Chin. Phys. B 20 017305
|
[2] |
Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W and Chen D M 2010 Chin. Phys. B 19 037304
|
[3] |
Sheng Z G, Gao J and Sun Y P 2009 Phys. Rev. B 79 014433
|
[4] |
Yasuhara R, Yamamoto T, Ohkubo I, Kumigashira H and Oshima M 2010 Appl. Phys. Lett. 97 132111
|
[5] |
Liu X J, Kuyyadi Biju P, Mostafa Bourim E, Park S, Lee W, Lee D, Seo K and Hwang H 2011 Electrochem. Solid-State Lett. 14 H9
|
[6] |
Lee W, Jo G, Lee S, Park J, Jo M, Lee J, Jung S, Kim S, Shin J, Park S, Lee T and Hwang H 2011 Appl. Phys. Lett. 98 032105
|
[7] |
Ouyang J Y, Chu C W, Szmanda C R, Ma L P and Yang Y 2004 Nature Mater. 3 918
|
[8] |
Zhang T, Su Z H, Chen H J, Ding L H and Zhang W F 2008 Appl. Phys. Lett. 93 172104
|
[9] |
Nian Y B, Strozier J, Wu N J, Chen X and Ignatiev A 2007 Phys. Rev. Lett. 98 146403
|
[10] |
Tulina N A, Zver'kov S A, Mukovskii Y M and Shulyatev D A 2001 Europhys. Lett. 56 836
|
[11] |
Rozenberg M J, Inoue I H and S醤chez M J 2004 Phys. Rev. Lett. 92 178302
|
[12] |
Jeong D S, Schroeder H and Waser R 2009 Phys. Rev. B 79 195317
|
[13] |
Liu S Q, Wu N J and Ignatiev A 2000 Appl. Phys. Lett. 76 2749
|
[14] |
Tsui S, Baikalov A, Cmaidalka J, Sun Y Y, Wang Y Q, Xue Y Y, Chu C W, Chen L and Jacobson A J 2004 Appl. Phys. Lett. 85 317
|
[15] |
Zhang T, Zhang X A, Ding L H and Zhang W F 2009 Nanoscale Res. Lett. 4 1309
|
[16] |
Lau H K, Leung C W, Hu W H and Chan P K L 2009 J. Appl. Phys. 106 014504
|
[17] |
Morales-Masis M, van der Molen S J, Fu W T, Hesselberth M B and van Ruitenbeek J M 2009 Nanotechnology 20 095710
|
[18] |
Yang Y, Ouyang J, Ma L, Tseng R J H and Chu C W 2006 Adv. Funct. Mater. 16 1001
|
[19] |
Tsui S, Wang Y Q, Xue Y Y and Chu C W 2006 Appl. Phys. Lett. 89 123502
|
[20] |
You Y H, So B S, Hwang J H, Cho W, Lee S S, Chung T M, Kim C G and An K S 2006 Appl. Phys. Lett. 89 222105
|
[21] |
Orazem M E and Tribollet B 2008 Electrochemical Impedance Spectroscopy (New Jersey: The Electrochemical Society) p. 311
|
[22] |
Abrantesa J C C, Labrinchab J A and Fradeb J R 2000 Materials Research Bulletin 35 727
|
[23] |
Muenstermann R, Menke T, Dittmann R and Waser R 2010 Adv. Mater. 22 4819
|
[24] |
Liang C H, Terabe K, Hasegawa T and Aono M 2007 Nanotechnology 18 485202
|
[25] |
Sawa A, Fujii T, Kawasaki M and Tokura Y 2004 Appl. Phys. Lett. 85 4073
|
[26] |
Tsubouchi K, Ohkubo I, Kumigashira H, Oshima M, Matsumoto Y, Itaka K, Ohnishi T, Lippmaa M and Koinuma H 2007 Adv. Mater. (Weinheim, Ger.) 19 1711
|
[27] |
Li S L, Liao Z L, Li J, Gang J L and Zheng D N 2009 J. Phys. D 42 045411
|
[28] |
Shono K, Kawano H, Yokota T and Gomi M 2008 Appl. Phys. Express 1 055002
|
[29] |
Rozenberg M J, Sanchez M J, Weht R, Acha C, Gomez-Marlasca F and Levy P 2010 Phys. Rev. B 81 115101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|