Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 118201    DOI: 10.1088/1674-1056/21/11/118201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of rotational isomerism on two-photon absorption properties of FTC chromophores

Han Guang-Chao (韩广超), Zhao Ke (赵珂), Liu Peng-Wei (刘朋伟), Zhang Li-Li (张立立 )
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  The influence of rotational isomerism on the two-photon absorption (TPA) of FTC chromophores has been investigated by using the quadratic response theory with the B3LYP functional. Eight rotamers induced by three rotatable single bonds in the molecule are fully optimized, and it is found that their conformational energies are nearly degenerate. Our calculations demonstrate that the rotational isomerism has important effects on the TPA cross sections. For a certain rotamer, the maximum TPA cross section is enhanced significantly. Also, in the longer wavelength region, the rotational isomerism could lead to a large shift of the TPA position.
Keywords:  rotational isomerism      two-photon absorption      organic molecule  
Received:  18 March 2012      Revised:  27 May 2012      Accepted manuscript online: 
PACS:  82.30.Qt (Isomerization and rearrangement)  
  33.80.Wz (Other multiphoton processes)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10904085).
Corresponding Authors:  Zhao Ke     E-mail:  zhaoke@sdnu.edu.cn

Cite this article: 

Han Guang-Chao (韩广超), Zhao Ke (赵珂), Liu Peng-Wei (刘朋伟), Zhang Li-Li (张立立 ) Influence of rotational isomerism on two-photon absorption properties of FTC chromophores 2012 Chin. Phys. B 21 118201

[1] Starkey J R, Rebane A K, Drobizhev M A, Meng F, Gong A, Elliott A, McInnemey K and Spangler C W 2008 Clin. Cancer. Res. 14 6546
[2] Kim H M and Cho B R 2009 Acc. Chem. Res. 42 863
[3] Dvornikov A S, Walker E P and Rentzepis P M 2009 J. Phys. Chem. A 113 13633
[4] Beverina L, Crippa M, Landenna M, Ruffo R, Salice P, Silvestri F, Versari S, Villa A, Ciaffoni L, Collini E, Ferrante C, Bradamante S, Mari C M, Bozio R and Pagani G A 2008 J. Am. Chem. Soc. 130 1894
[5] Brown S B, Brown E A and Walker I 2004 Lancet Oncol 5 417
[6] He G S, Tan L S, Zheng Q D and Prasad P N 2008 Chem. Rev. 108 1245
[7] Davies J A, Elangovan A, Sullivan P A, Olbricht B C, Bale D H, Ewy T R, Isborn C M, Eichinger B E, Robinson B H, Reid P J, Li X and Dalton L R 2008 J. Am. Chem. Soc. 130 10565
[8] Wang C K, Macak P, Luo Y and Agren H 2001 J. Chem. Phys. 114 9813
[9] Macak P, Luo Y, Norman P and Agren H 2000 J. Chem. Phys. 113 7055
[10] Nguyen K A, Day P N and Pachter R 2009 J. Phys. Chem. A 113 13943
[11] Sun Y H and Wang C K 2011 Chin. Phys. B 10 104204
[12] Wang C K, Zhao K, Su Y, Yan R, Zhao X and Luo Y 2003 J. Chem. Phys. 119 1208
[13] Zhao K, Ferrighi L, Frediani L, Wang C K and Luo Y 2007 J. Chem. Phys. 126 204509
[14] Wang C K, Xing X J, Huang X M and Gao Y 2007 Chin. Phys. 16 3323
[15] Liu K, Wang Y H, Tu Y Q, Agren H and Luo Y 2008 J. Phys. Chem. B 112 4387
[16] Sun Y H, Li J, Zhao K and Wang C K 2010 Chin. Phys. B 19 044207
[17] Kinnibrugh T, Bhattacharjee S, Sullivan P, Isborn C, Robinson B H and Eichinger B E 2006 J. Phys. Chem. B 110 13512
[18] Arnbjerg J, Jiménez-Banzo A, Paterson M J, Nonell S, Borrell J I, Christiansen O and Ogilby P R 2007 J. Am. Chem. Soc. 129 5188
[19] Guillaume M, Ruud K, Rizzo A, Monti S, Lin Z J and Xu X 2010 J. Phys. Chem. B 114 6500
[20] Zhao K and Luo Y 2010 J. Phys. Chem. B 114 13167
[21] Liu P W, Zhao K and Han G C 2011 Chem. Phys. Lett. 514 226
[22] Luo Y, Norman P, Macak P and Agren H 2000 J. Chem. Phys. 104 4718
[23] Monson P R and McClain W M 1970 J. Chem. Phys. 53 29
[24] Albota M, Beljonne D, Brédas J L, Ehrlich J E, Fu J Y, Heikal A A, Hess S E, Kogej T, Levin M D, Marder S R, Maughon D M, Perry J W, Röckel H, Rumi M, Subramaniam G, Webb W W, Wu X L and Xu C 1998 Science 281 1653
[25] Andzelm J, Rinderspacher B C, Rawlett A, Dougherty J, Baer R and Govind N 2009 J. Chem. Theory Comput. 5 2835
[26] Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03 (Revision D.02) (Wallingford: Gaussian Inc.)
[27] Angeli C, Bak K L, Bakken V, et al. 2005 Dalton2.0 (Release 2.0)
[28] Zhao K, Tu Y Q and Luo Y 2009 J. Phys. Chem. B 113 10271
[29] Zhao K, Liu P W, Wang C K and Luo Y 2010 J. Phys. Chem. B 114 10814
[1] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[2] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[3] Ultrafast carrier dynamics of Cu2O thin film induced by two-photon excitation
Jian Liu(刘建), Jing Li(李敬), Kai-Jun Mu(牧凯军), Xin-Wei Shi(史新伟), Jun-Qiao Wang(王俊俏), Miao Mao(毛淼), Shu Chen(陈述), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(11): 114205.
[4] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[5] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
[6] High-power ultraviolet 278-nm laser from fourth-harmonic generation of an Nd: YAG amplifier in CsB3O5 crystal
Miao He(何苗), Feng Yang(杨峰), Cheng Dong(董程), Zhi-Chao Wang(王志超), Lei Yuan(袁磊), Yi-Ting Xu(徐一汀), Guo-Chun Zhang(张国春), Zhi-Min Wang(王志敏), Yong Bo(薄勇), Qin-Jun Peng(彭钦军), Da-Fu Cui(崔大复), Yi-Cheng Wu(吴以成), Zu-Yan Xu(许祖彦). Chin. Phys. B, 2018, 27(5): 054211.
[7] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[8] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[9] Isomerism and coordination mode effects on two-photon absorption of tris(picolyl)amine-based fluorescent probes for zinc ions
Ke Zhao(赵珂), Jun Song(宋军), Mei-Yu Zhu(朱美玉), Han Zhang(张瀚), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(10): 103301.
[10] Optical power limiting of ultrashort hyper-Gaussian pulses in cascade three-level system
Ji-Cai Liu(刘纪彩), Fen-Fen Guo(郭芬芬), Ya-Nan Zhao(赵亚男), Xing-Zhe Li(李兴哲). Chin. Phys. B, 2018, 27(10): 104209.
[11] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[12] Responsive mechanism of three novel hypochlorous acid fluorescent probes and solvent effect on their sensing performance
Yong Zhou(周勇), Yun-Kun Wang(王云坤), Xiao-Fei Wang(王晓菲), Yu-Jin Zhang(张玉瑾), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(8): 083102.
[13] Responsive mechanism of 2-(2'-hydroxyphenyl)benzoxazole-based two-photon fluorescent probes for zinc and hydroxide ions
Zhang Yu-Jin (张玉瑾), Zhang Qiu-Yue (张秋月), Ding Hong-Juan (丁红娟), Song Xiu-Neng (宋秀能), Wang Chuan-Kui (王传奎). Chin. Phys. B, 2015, 24(2): 023301.
[14] Nonadiabatic dynamics of electron injection into organic molecules
Zhu Li-Ping(朱丽萍), Qiu Yu(邱宇), and Tong Guo-Ping(童国平) . Chin. Phys. B, 2012, 21(7): 077302.
[15] Polarization and phase control of two-photon absorption in an isotropic molecular system
Lu Chen-Hui (卢晨晖), Zhang Hui (张晖), Zhang Shi-An (张诗按), Sun Zhen-Rong (孙真荣). Chin. Phys. B, 2012, 21(12): 123202.
No Suggested Reading articles found!