INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influence of rotational isomerism on two-photon absorption properties of FTC chromophores |
Han Guang-Chao (韩广超), Zhao Ke (赵珂), Liu Peng-Wei (刘朋伟), Zhang Li-Li (张立立 ) |
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
|
|
Abstract The influence of rotational isomerism on the two-photon absorption (TPA) of FTC chromophores has been investigated by using the quadratic response theory with the B3LYP functional. Eight rotamers induced by three rotatable single bonds in the molecule are fully optimized, and it is found that their conformational energies are nearly degenerate. Our calculations demonstrate that the rotational isomerism has important effects on the TPA cross sections. For a certain rotamer, the maximum TPA cross section is enhanced significantly. Also, in the longer wavelength region, the rotational isomerism could lead to a large shift of the TPA position.
|
Received: 18 March 2012
Revised: 27 May 2012
Accepted manuscript online:
|
PACS:
|
82.30.Qt
|
(Isomerization and rearrangement)
|
|
33.80.Wz
|
(Other multiphoton processes)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10904085). |
Corresponding Authors:
Zhao Ke
E-mail: zhaoke@sdnu.edu.cn
|
Cite this article:
Han Guang-Chao (韩广超), Zhao Ke (赵珂), Liu Peng-Wei (刘朋伟), Zhang Li-Li (张立立 ) Influence of rotational isomerism on two-photon absorption properties of FTC chromophores 2012 Chin. Phys. B 21 118201
|
[1] |
Starkey J R, Rebane A K, Drobizhev M A, Meng F, Gong A, Elliott A, McInnemey K and Spangler C W 2008 Clin. Cancer. Res. 14 6546
|
[2] |
Kim H M and Cho B R 2009 Acc. Chem. Res. 42 863
|
[3] |
Dvornikov A S, Walker E P and Rentzepis P M 2009 J. Phys. Chem. A 113 13633
|
[4] |
Beverina L, Crippa M, Landenna M, Ruffo R, Salice P, Silvestri F, Versari S, Villa A, Ciaffoni L, Collini E, Ferrante C, Bradamante S, Mari C M, Bozio R and Pagani G A 2008 J. Am. Chem. Soc. 130 1894
|
[5] |
Brown S B, Brown E A and Walker I 2004 Lancet Oncol 5 417
|
[6] |
He G S, Tan L S, Zheng Q D and Prasad P N 2008 Chem. Rev. 108 1245
|
[7] |
Davies J A, Elangovan A, Sullivan P A, Olbricht B C, Bale D H, Ewy T R, Isborn C M, Eichinger B E, Robinson B H, Reid P J, Li X and Dalton L R 2008 J. Am. Chem. Soc. 130 10565
|
[8] |
Wang C K, Macak P, Luo Y and Agren H 2001 J. Chem. Phys. 114 9813
|
[9] |
Macak P, Luo Y, Norman P and Agren H 2000 J. Chem. Phys. 113 7055
|
[10] |
Nguyen K A, Day P N and Pachter R 2009 J. Phys. Chem. A 113 13943
|
[11] |
Sun Y H and Wang C K 2011 Chin. Phys. B 10 104204
|
[12] |
Wang C K, Zhao K, Su Y, Yan R, Zhao X and Luo Y 2003 J. Chem. Phys. 119 1208
|
[13] |
Zhao K, Ferrighi L, Frediani L, Wang C K and Luo Y 2007 J. Chem. Phys. 126 204509
|
[14] |
Wang C K, Xing X J, Huang X M and Gao Y 2007 Chin. Phys. 16 3323
|
[15] |
Liu K, Wang Y H, Tu Y Q, Agren H and Luo Y 2008 J. Phys. Chem. B 112 4387
|
[16] |
Sun Y H, Li J, Zhao K and Wang C K 2010 Chin. Phys. B 19 044207
|
[17] |
Kinnibrugh T, Bhattacharjee S, Sullivan P, Isborn C, Robinson B H and Eichinger B E 2006 J. Phys. Chem. B 110 13512
|
[18] |
Arnbjerg J, Jiménez-Banzo A, Paterson M J, Nonell S, Borrell J I, Christiansen O and Ogilby P R 2007 J. Am. Chem. Soc. 129 5188
|
[19] |
Guillaume M, Ruud K, Rizzo A, Monti S, Lin Z J and Xu X 2010 J. Phys. Chem. B 114 6500
|
[20] |
Zhao K and Luo Y 2010 J. Phys. Chem. B 114 13167
|
[21] |
Liu P W, Zhao K and Han G C 2011 Chem. Phys. Lett. 514 226
|
[22] |
Luo Y, Norman P, Macak P and Agren H 2000 J. Chem. Phys. 104 4718
|
[23] |
Monson P R and McClain W M 1970 J. Chem. Phys. 53 29
|
[24] |
Albota M, Beljonne D, Brédas J L, Ehrlich J E, Fu J Y, Heikal A A, Hess S E, Kogej T, Levin M D, Marder S R, Maughon D M, Perry J W, Röckel H, Rumi M, Subramaniam G, Webb W W, Wu X L and Xu C 1998 Science 281 1653
|
[25] |
Andzelm J, Rinderspacher B C, Rawlett A, Dougherty J, Baer R and Govind N 2009 J. Chem. Theory Comput. 5 2835
|
[26] |
Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03 (Revision D.02) (Wallingford: Gaussian Inc.)
|
[27] |
Angeli C, Bak K L, Bakken V, et al. 2005 Dalton2.0 (Release 2.0)
|
[28] |
Zhao K, Tu Y Q and Luo Y 2009 J. Phys. Chem. B 113 10271
|
[29] |
Zhao K, Liu P W, Wang C K and Luo Y 2010 J. Phys. Chem. B 114 10814
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|