Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100505    DOI: 10.1088/1674-1056/21/10/100505
GENERAL Prev   Next  

Chaos in a fractional-order micro-electro-mechanical resonator and its suppression

Mohammad Pourmahmood Aghababa
Electrical Engineering Department, Urmia University of Technology, Urmia, Iran
Abstract  The present paper investigates the existence of chaos in a non-autonomous fractional-order micro-electro-mechanical resonator system (FOMEMRS). Using the maximal Lyapunov exponent criterion, we show that the FOMEMRS exhibits chaos. Strange attractors of the system are plotted to validate its chaotic behavior. Afterward, a novel fractional finite-time controller is introduced to suppress the chaos of the FOMEMRS with model uncertainties and external disturbances in a given finite time. Using the latest version of the fractional Lyapunov theory, the finite time stability and robustness of the proposed scheme are proved. Finally, we present some computer simulations to illustrate the usefulness and applicability of the proposed method.
Keywords:  micro-electro-mechanical resonator      chaotic behavior      fractional calculus      fractional finite-time controller  
Received:  14 January 2012      Revised:  06 April 2012      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.30.Pr (Fractional statistics systems)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  02.30.Yy (Control theory)  
Corresponding Authors:  Mohammad Pourmahmood Aghababa     E-mail:  m.p.aghababa@ee.uut.ac.ir; m.pour13@gmail.com

Cite this article: 

Mohammad Pourmahmood Aghababa Chaos in a fractional-order micro-electro-mechanical resonator and its suppression 2012 Chin. Phys. B 21 100505

[1] Lyshevski S E 2001 MEMS and NEMS: Systems, Devices, and Structures (Boca Raton: CRC Press)
[2] Lyshevski S E 2003 Energy Conversion Manage 44 667
[3] Zhu G, Lévine J, Praly L and Peter Y A 2006 J Microelectromech. Syst. 15 1165
[4] Xie H and Fedder G 2002 Sens. Actuat. A 95 212
[5] Mestrom R M C, Fey R H B, van Beek J T M, Phan K L and Nijmeijer H 2007 Sens. Actuat. A 142 306
[6] Younis M I and Nayfeh A H 2003 Nonlinear Dyn. 31 91
[7] Braghin F, Resta F, Leo E and Spinola G 2007 Sens. Actuat. A 134 98
[8] Wang Y C, Adams S G, Thorp J S, MacDonald N C, Hartwell P, Bertsch F, et al. 1998 IEEE Trans. Circ. Syst. I 45 1013
[9] De S K and Aluru N R 2006 J. Microelectromech. Syst. 15 355
[10] Luo A and Wang F Y 2002 Commun. Nonlinear Sci. Numer. Simul. 7 31
[11] Chavarette F R, Balthazar J M, Felix J L P and Rafikov M 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1844
[12] Barry E, De M, Butterfield E, Moehlis J and Turner K 2007 J. Microelectromech. Syst. 16 1314
[13] Liu S, Davidson A and Lin Q 2004 J. Micromech. Microeng. 14 1064
[14] Haghighi H H and Markazi A H D 2010 Commun. Nonlinear Sci. Numer. Simul. 15 3091
[15] Yau H T, Wang C C, Hsieh C T and Cho C C 2011 Comput. Math. Appl. 61 1912
[16] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[17] Hilfer R 2001 Applications of Fractional Calculus in Physics (New Jersey: World Scientific)
[18] Rapaić M R and Jeličić Z D 2010 Nonlinear Dyn. 62 39
[19] Luo Y, Chen Y Q and Pi Y 2011 Mechatronics 21 204
[20] Laskin N 2000 Physica A 287 482
[21] Rivero M, Trujillo J J, Vázquez L and Velasco M P 2011 Appl. Math. Comput. 218 1089
[22] Cao J, Ma C, Jiang Z and Liu S 2011 Commun. Nonlinear Sci. Numer. Simul. 16 1443
[23] Petráš I 2009 Nonlinear Dyn. 57 157
[24] Wu X and Wang H 2010 Nonlinear Dyn. 61 407
[25] Ge Z M and Jhuang W R 2007 Chaos, Solitons and Fractals 33 270
[26] Ge Z M and Yi C X 2007 Chaos, Solitons and Fractals 32 42
[27] Aghababa M P 2012 Commun. Nonlinear Sci. Numer. Simul. 17 2670
[28] Aghababa M P 2011 Nonlinear Dyn. doi:10.1007/s11071-011-0261-6
[29] Li Y, Chen Y Q and Podlubny I 2009 Automatica 45 1965
[30] Rosenstein M T, Collins J J and De Luca C J 1993 Physica D 65 117
[31] Hardy G H, Littlewood J E and Polya G 1952 Inequalities (Cambridge: Cambridge University Press)
[32] Utkin V I 1992 Sliding Modes in Control Optimization (Berlin: Springer-Verlag)
[33] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dyn. 29 3
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[3] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[4] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[5] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[6] Transient transition behaviors of fractional-order simplest chaotic circuit with bi-stable locally-active memristor and its ARM-based implementation
Zong-Li Yang(杨宗立), Dong Liang(梁栋), Da-Wei Ding(丁大为), Yong-Bing Hu(胡永兵), and Hao Li(李浩). Chin. Phys. B, 2021, 30(12): 120515.
[7] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[8] Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order
Qiu-Yan He(何秋燕), Bo Yu(余波), Xiao Yuan(袁晓). Chin. Phys. B, 2017, 26(4): 040202.
[9] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[10] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[11] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[12] Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative
Rajneesh Kumar, Vandana Gupta. Chin. Phys. B, 2013, 22(7): 074601.
[13] Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus
Wang Fa-Qiang (王发强), Ma Xi-Kui (马西奎). Chin. Phys. B, 2013, 22(3): 030506.
[14] Chaotic behaviors of the (2+1)-dimensional generalized Breor–Kaup system
Ma Song-Hua(马松华), Fang Jian-Ping(方建平), Ren Qing-Bao(任清褒), and Yang Zheng(杨征) . Chin. Phys. B, 2012, 21(5): 050511.
[15] A new generalized fractional Dirac soliton hierarchy and its fractional Hamiltonian structure
Wei Han-Yu (魏含玉), Xia Tie-Cheng (夏铁成 ). Chin. Phys. B, 2012, 21(11): 110203.
No Suggested Reading articles found!