Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017203    DOI: 10.1088/1674-1056/21/1/017203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction

Tian Hong-Yu(田宏玉) and Wang Jun(汪军)
Department of Physics, Southeast University, Nanjing 210096, China
Abstract  We investigate the spin-dependent electron transport in single and double normal/ferromagnetic/normal zigzag graphene nanoribbon (NG/FG/NG) junctions. The ferromagnetism in the FG region originates from the spontaneous magnetization of the zigzag graphene nanoribbon. It is shown that when the zigzag-chain number of the ribbon is even and only a single transverse mode is actived, the single NG/FG/NG junction can act as a spin polarizer and/or a spin analyzer because of the valley selection rule and the spin-exchange field in the FG, while the double NG/FG/NG/FG/NG junction exhibits a quantum switching effect, in which the on and the off states switch rapidly by varying the cross angle between two FG magnetizations. Our findings may shed light on the application of magnetized graphene nanoribbons to spintronics devices.
Keywords:  spontaneous magnetization      zigzag graphene nanoribbon      spin polarizer      quantum switching effect  
Received:  17 May 2011      Revised:  01 September 2011      Accepted manuscript online: 
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 110704032 and 110704033), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010416), and the National Basic Research Program of China (Grant No. 2009CB

Cite this article: 

Tian Hong-Yu(田宏玉) and Wang Jun(汪军) Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction 2012 Chin. Phys. B 21 017203

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Fujita M, Wakabayashi K, Nakada K and Kusakabe K 1996 J. Phys. Soc. Jpn. 65 1920
[3] Lee H, Son Y W, Park N, Han S and Yu J 2005 Phys. Rev. B 72 174431
[4] Pisani L, Chan J A, Montanari B and Harrison N M 2007 it Phys. Rev. B 75 064418
[5] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[6] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[7] Tombros N, Jozsa C, Popinciuc M, Jonkman H T and van Wees B J 2007 Nature 448 571
[8] Brey L, Fertig H A and Das Sarma S 2007 Phys. Rev. Lett. 99 116802
[9] Yazyev O V and Katsnelson M I 2008 Phys. Rev. Lett. 100 047209
[10] Wimmer M, Adagideli I, Berber S, Tomanek D and Richter K 2008 Phys. Rev. Lett. 100 177207
[11] Munoz-Rojas F, Fernandez-Rossier J and Palacios J J 2009 it Phys. Rev. Lett. 102 136810
[12] Zhang Y T, Jiang H, Sun Q F and Xie X C 2010 Phys. Rev. B 81 165404
[13] Sun Q F and Xie X C 2009 J. Phys.: Condens. Matter 21 344204
[14] Rycerz A, Tworzydlo J and Beenakker C W J 2007 Nat. Phys. 3 172
[15] Akhmerov A R, Bardarson J H, Rycerz A and Beenakker C W J 2008 Phys. Rev. B 77 205416
[16] Cresti A, Grosso G and Parravicini G P 2008 Phys. Rev. B 77 233402
[17] Wakabayashi K and Aoki T 2002 Int. J. Mod. Phys. B 16 4897
[18] Kim W Y and Kim K S 2008 Nat. Nanotechnol. 3 408
[19] Wang J, Zhang L and Chan K S 2011 Phys. Rev. B 83 125425
[20] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[21] Wang Y, Huang Y, Song Y, ZhangX , Ma Y, Liang J and Chen Y 2009 Nano Lett. 9 220
[22] Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y and Jena P 2009 Nano Lett. 9 3867
[24] Nakabayashi J, Yamamoto D and Kurihara S 2009 Phys. Rev. Lett. 102 066803
[25] Saha S K, Baskey M and Majumdar D 2010 Adv. Mat. 22 5531
[26] Zhai F and Yang L 2011 Appl. Phys. Lett. 98 062101
[27] Yokoyama T and Linder J 2011 Phys. Rev. B 83 081418(R)
[28] Zhou H Q, Yang H C, Qiu C Y, Liu Z, Yu F, Hu L J, Xia X X, Yang H F, Gu C Z and Sun L F 2011 Chin. Phys. B 20 026803
[1] Band structure and edge states of star-like zigzag graphene nanoribbons
Hong Liu(刘红). Chin. Phys. B, 2017, 26(11): 117301.
[2] Adiabatic quantum pump in a zigzag graphene nanoribbon junction
Zhang Lin (张林). Chin. Phys. B, 2015, 24(11): 117202.
[3] Valley selection rule in a Y-shaped zigzag graphene nanoribbon junction
Zhang Lin (张林), Wang Jun (汪军). Chin. Phys. B, 2014, 23(8): 087202.
[4] Spin-polarized transport in graphene nanoribbon superlattices
Yu Xin-Xin (余欣欣), Xie Yue-E (谢月娥), Yang Tao (欧阳滔), Chen Yuan-Ping (陈元平). Chin. Phys. B, 2012, 21(10): 107202.
[5] Ground state of a superconducting π ring array under external magnetic fields
Li Zhuang-Zhi(李壮志), Feng Yun(冯运), Wang Fu-Ren(王福仁), and Dai Yuan-Dong(戴远东). Chin. Phys. B, 2007, 16(5): 1450-1458.
[6] Investigation of spontaneous magnetization of coupled 2×2 superconducting $\pi$ ring array
Li Zhuang-Zhi (李壮志), Wang Fu-Ren (王福仁), Yang Tao (杨涛), Liu Xin-Yuan (刘新元), Ma Ping (马平), Xie Fei-Xiang (谢飞翔), Nie Rui-Juan (聂瑞娟), Dai Yuan-Dong (戴远东). Chin. Phys. B, 2004, 13(4): 532-537.
No Suggested Reading articles found!