Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097304    DOI: 10.1088/1674-1056/20/9/097304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An improvement to computational efficiency of the drain current model for double-gate MOSFET

Zhou Xing-Ye(周幸叶)a)b), Zhang Jian(张健) a), Zhou Zhi-Ze(周致赜)a), Zhang Li-Ning(张立宁)a), Ma Chen-Yue(马晨月) a), Wu Wen(吴文)c), Zhao Wei(赵巍)c), and Zhang Xing(张兴) a)†
a TSRC, Institute of Microelectronics, School of Electronic Engineering and Computer Science, Peking University, Beijing 100871, China; b Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, Chinac Peking University Shenzhen SOC Key Laboratory, PKU-HKUST Shenzhen Institution, Shenzhen 518057, China
Abstract  As a connection between the process and the circuit design, the device model is greatly desired for emerging devices, such as the double-gate MOSFET. Time efficiency is one of the most important requirements for device modeling. In this paper, an improvement to the computational efficiency of the drain current model for double-gate MOSFETs is extended, and different calculation methods are compared and discussed. The results show that the calculation speed of the improved model is substantially enhanced. A two-dimensional device simulation is performed to verify the improved model. Furthermore, the model is implemented into the HSPICE circuit simulator in Verilog-A for practical application.
Keywords:  computational efficiency      compact model      double-gate      MOSFET  
Received:  18 January 2011      Revised:  28 February 2011      Accepted manuscript online: 
PACS:  73.40.Ty (Semiconductor-insulator-semiconductor structures)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  61.44.Br (Quasicrystals)  

Cite this article: 

Zhou Xing-Ye(周幸叶), Zhang Jian(张健), Zhou Zhi-Ze(周致赜), Zhang Li-Ning(张立宁), Ma Chen-Yue(马晨月), Wu Wen(吴文), Zhao Wei(赵巍), and Zhang Xing(张兴) An improvement to computational efficiency of the drain current model for double-gate MOSFET 2011 Chin. Phys. B 20 097304

[1] Taur Y, Buchanan D A, Chen W, Frank D J, Ismail K E, Lo S H, Sai-halasz G A, Viswanathan R G, Wann H C, Wind S J and Wong H S 1997 Proc. IEEE 85 486
[2] Balestra F, Cristoloveanu S, Benachir M, Brini J and Elewa T 1987 IEEE Electron Device Lett. ED-8 410
[3] Frank D J, Laux S E and Solomon M V 1992 Technical Digest of the International Electron Devices Meeting, December 13-16, 1992, San Francisco, USA, p. 553
[4] Taur Y 2000 IEEE Electron Device Lett. 21 245
[5] Zhou X, Zhu Z M, Rustagi S C, See G H, Zhu G J, Lin S H, Wei C Q and Lim G H 2008 IEEE Trans. Electron Devices 55 616
[6] Sallese J M, Krummenacher F, Pr'egaldiny F, Lallement C, Roy A and Enz C 2005 Solid-State Electron. 49 485
[7] Reyboz M, Rozeau O, Poiroux T, Martin P and Jomaah J 2006 Solid-State Electron. 50 1276
[8] Ortize-Conde A and Garcia-Sanchez F J 2006 Solid-State Electron. 50 1796
[9] Lu H X and Taur Y 2006 IEEE Trans. Electron Devices 53 1161
[10] Shangguan W Z, Zhou X, Chandrasekaran K, Zhu Z M, Rustagi S C, Chiah S B and See G H 2007 IEEE Trans. Electron Devices 54 169
[11] Liu F, He J, Fu Y, Hu J, Bian W, Song Y, Zhang X and Chan M 2008 IEEE Trans. Electron Devices 55 816
[12] Dessai G and Gildenblat G 2010 Solid-State Electron. 54 382
[13] Sahoo A, Thakur P K and Mahapatra S 2010 IEEE Trans. Electron Devices 57 632
[14] Ortiz-Conde A, Garc'hia-S'anchez F J, Muci J, Malobabic S and Liou J J 2007 IEEE Trans. Electron Devices 54 131
[15] Zhou X Y, Zhou Z Z, Zhang J, Zhang L N, Ma C Y, He J and Zhang X 2010 Solid State Electron. 54 1444
[16] Zhou X Y, Zhang J, Zhou Z Z, Zhang L N, Ma C Y, Wu W, Zhao W and Zhang X 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, November 1-4, 2010, Shanghai, China, p. 1874
[17] TCAD Sentaurus Device User's Manual 2007 Synopsys, Mountain View, CA
[18] MATLABtextcircledfootnotesize R Online Reference Manual, available at www.mathworks.com
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[3] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[4] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[5] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[6] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[7] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[8] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[9] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
[10] Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure
Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087305.
[11] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[12] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[13] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[14] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[15] Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦). Chin. Phys. B, 2020, 29(3): 038505.
No Suggested Reading articles found!