Please wait a minute...
Chinese Physics, 2005, Vol. 14(8): 1608-1612    DOI: 10.1088/1009-1963/14/8/025
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Study of effect of H2 addition on the production of fluorocarbon radicals in H2C4F8 inductively coupled plasma via optical emission spectroscopy actinometry

Huang Song (黄松), Xin Yu (辛煜), Ning Zhao-Yuan (宁兆元)
Department of Physics, Suzhou University, Suzhou 215006,China
Abstract  C4F8 plasma with the addition of H2 is generated by the inductively coupled plasma (ICP) method. The relative densities of CF,CF2, H and F radicals are determined by actinometric optical emission spectroscopy (AOES) as a function of the gas flow rate ratio R=H2/(H2+C4F8 at a pressure of 0.8 Pa and an input r.f.power of 400W, while that of HF is measured by quadrupole mass spectrometry (QMS). The results show that plasma activity increases firstly and then decreases with increasing R. As the gas flow rate ratio R changes from 0 to 0.625, relative densities of both CF and CF2 decrease, and the relative [CF] has a similar tendency as the calculated [CF], indicating that CF radicals are generated mainly by the electron impact dissociation of CF2 radicals. Production of HF is also discussed.
Keywords:  optical emission spectroscopy      fluorocarbon radicals      C4F8 ICP plasma   
Received:  16 September 2004      Revised:  23 November 2004      Accepted manuscript online: 
PACS:  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  52.30.-q (Plasma dynamics and flow)  
  34.80.Ht (Dissociation and dissociative attachment)  
  82.33.Xj (Plasma reactions (including flowing afterglow and electric discharges))  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  52.80.Yr (Discharges for spectral sources)  
Fund: Project supported by the Foundation of Key Laboratory of Thin Films, Jiangsu province, China, and the NationalNatural Science Foundation of China (Grant No 10305008).

Cite this article: 

Huang Song (黄松), Xin Yu (辛煜), Ning Zhao-Yuan (宁兆元) Study of effect of H2 addition on the production of fluorocarbon radicals in H2C4F8 inductively coupled plasma via optical emission spectroscopy actinometry 2005 Chinese Physics 14 1608

[1] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[2] Decomposition reaction of phosphate rock under the action of microwave plasma
Hui Zheng(郑慧), Meng Yang(杨猛), Cheng-Fa Jiang(江成发), and Dai-Jun Liu(刘代俊). Chin. Phys. B, 2021, 30(4): 045201.
[3] Understanding hydrogen plasma processes based on the diagnostic results of 2.45 GHz ECRIS at Peking University
Wen-Bin Wu(武文斌), Hai-Tao Ren(任海涛), Shi-Xiang Peng(彭士香), Yuan Xu(徐源), Jia-Mei Wen(温佳美), Jiang Sun(孙江), Ai-Lin Zhang(张艾霖), Tao Zhang(张滔), Jing-Feng Zhang(张景丰), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2017, 26(9): 095204.
[4] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[5] Aspects of the upstream region in a plasma jet with dielectric barrier discharge configurations
Li Xue-Chen(李雪辰), Jia Peng-Ying(贾鹏英), Yuan-Ning(袁宁), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(4): 045204.
[6] Evolution of infrared spectra and optical emission spectra in hydrogenated silicon thin films prepared by VHF-PECVD
Hou Guo-Fu(侯国付), Geng Xin-Hua(耿新华), Zhang Xiao-Dan(张晓丹), Sun Jian(孙建), Zhang Jian-Jun(张建军), and Zhao Ying(赵颖). Chin. Phys. B, 2011, 20(7): 077802.
[7] Diagnosis of a low pressure capacitively coupled argon plasma by using a simple collisional-radiative model
Yu Yi-Qing(虞一青), Xin Yu(辛煜), and Ning Zhao-Yuan(宁兆元). Chin. Phys. B, 2011, 20(1): 015207.
[8] Study on the transition from filamentary discharge to diffuse discharge by using a dielectric barrier surface discharge device
Li Xue-Chen(李雪辰), Liu Zhi-Hui(刘志辉), Jia Peng-Ying(贾鹏英), Li Li-Chun(李立春), Yin Zeng-Qian(尹增谦), and Dong Li-Fang(董丽芳). Chin. Phys. B, 2007, 16(10): 3016-3021.
[9] The role of hydrogen in hydrogenated microcrystalline silicon film and in deposition process with VHF-PECVD technique
Yang Hui-Dong (杨恢东), Su Zhong-Yi (苏中义). Chin. Phys. B, 2006, 15(6): 1374-1378.
[10] Optical emission spectroscopy study on depositionprocess of microcrystalline silicon
Wu Zhi-Meng(吴志猛), Lei Qing-Song(雷青松), Geng Xin-Hua(耿新华), Zhao Ying(赵颖), Sun Jian(孙建), and Xi Jian-Ping(奚建平). Chin. Phys. B, 2006, 15(11): 2713-2717.
No Suggested Reading articles found!