Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 034210    DOI: 10.1088/1674-1056/20/3/034210
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Numerical investigation of slow solitons in Bragg gratings with a hyperbolic tangent apodization

Wang Kui-Ru(王葵如), Cheng Jie-Lin(程洁琳), Sang Xin-Zhu(桑新柱), and Chen Gong(陈功)
Key Laboratory of Information Photonics and Optical Communications of Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  This paper numerically and analytically investigates the formation and propagation motion of optical soliton in the Bragg grating. We choose the fibre Bragg grating with hyperbolic tangent apodization in the middle section in order to obtain slower solitons. Optical fibre soliton but not Bragg grating soliton is used as input pulse in the discussion, which is much more approximate to the light source for the practical purpose. We discuss in detail the effects of the soliton's velocity with some parameters in the process of transmission. The results show that by choosing special parameters, one can make the soliton slow-down with a little distortion and energy decay and obtain tunable time-delay on a small scale.
Keywords:  fibre grating      slow light      soliton      hyperbolic tangent apodization  
Received:  01 June 2010      Revised:  22 July 2010      Accepted manuscript online: 
PACS:  42.81.Wg (Other fiber-optical devices)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.79.Dj (Gratings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60677003).

Cite this article: 

Wang Kui-Ru(王葵如), Cheng Jie-Lin(程洁琳), Sang Xin-Zhu(桑新柱), and Chen Gong(陈功) Numerical investigation of slow solitons in Bragg gratings with a hyperbolic tangent apodization 2011 Chin. Phys. B 20 034210

[1] Luo B, Hang C, Li H J and Huang G X 2010 Chin. Phys. B 19 054214
[2] del Barco O and Ortu no M 2010 Phys. Rev. A 81 023833
[3] Jiang Y, Jiang W, Gu L, Chen X and Chen R T 2005 Appl. Phys. Lett. 87 221105
[4] Jacobsen R S, Andersen K N, Borel P I, Fage-Pedersen J, Frandsen L H, Hansen O, Kristensen M, Lavrinenko A V, Moulin G, Ou H, Peucheret C, Zsigri B and Bjarklev A 2006 Nature 441 199
[5] Qiu W, Zhang Y D, Ye J B, Tian H, Wang N, Wang J F and Yuan P 2007 Acta Phys. Sin. 56 7009 (in Chinese)
[6] Winful H G 1985 Appl. Phys. Lett. 46 527
[7] Eggleton B J, Slusher R E, de Sterke C M, Krug Peter A and Sipe J E 1996 Phys. Rev. Lett. 76 1627
[8] Mak William C K, Malomed Boris A and Chu Pak L 2003 Phys. Rev. E 68 026609
[9] Mak William C K, Malomed Boris A and Chu Pak L 2004 J. Mod. Opt. 51 2141
[10] Mok J T, de Sterke C M, Littler I C M and Eggleton B J 2006 Nat. Phys. 2 775
[11] Eggleton B J, de Sterke C M and Slusher R E 1999 J. Opt. Soc. Am. B 16 587
[12] de Sterke C M and Eggleton B J 1999 Phys. Rev. E 59 1267
[13] de Sterke C M and Sipe J E 1990 Phys. Rev. A 42 550
[14] de Sterke C M, Salinas D C and Sipe J E 1996 Phys. Rev. E 54 1969
[15] Wu C Q 2009 Acta Opt. Sin. 29 3487 (in Chinese) endfootnotesize
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[5] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[6] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[7] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[8] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[9] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[10] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[11] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[12] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[13] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[14] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!