|
|
Conformation effects on the molecular orbitals of serine |
Wang Ke-Dong(王克栋)a)†,Ma Peng-Fei(马鹏飞)a),and Shan Xu(单旭)b) |
a Department of Physics, Key Laboratory of Photovoltaic Materials of Henan Province, Henan Normal University, Xinxiang 453007, China; b Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract This paper calculates the five most stable conformers of serine with Hartree–Fock theory, density functional theory (B3LYP), Møller–Plesset perturbation theory (MP4(SDQ)) and electron propagation theory with the 6-311++G(2d,2p) basis set. The calculated vertical ionization energies for the valence molecular orbitals of each conformer are in agreement with the experimental data, indicating that a range of molecular conformations would coexist in an equilibrium sample. Information of the five outer valence molecular orbitals for each conformer is explored in coordinate and momentum spaces using dual space analysis to investigate the conformational processes, which are generated from the global minimum conformer Ser1 by rotation of C2–C3 (Ser4), C1–C2 (Ser5) and C1–O2 (Ser2 and Ser3). Orbitals 28a, 27a and 26a are identified as the fingerprint orbitals for all the conformational processes.
|
Received: 10 April 2010
Revised: 11 August 2010
Accepted manuscript online:
|
PACS:
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
33.15.Ry
|
(Ionization potentials, electron affinities, molecular core binding energy)
|
|
31.15.xw
|
(Valence bond calculations)
|
|
Fund: Project supported by the Doctoral Research Fund of Henan Normal University, China (Grant No. 525449). |
Cite this article:
Wang Ke-Dong(王克栋), Ma Peng-Fei(马鹏飞), and Shan Xu(单旭) Conformation effects on the molecular orbitals of serine 2011 Chin. Phys. B 20 033102
|
[1] |
Zhu P, Tang X Q and Xu Z Y 2009 Chin. Phys. B 18 363
|
[2] |
Chen Y, Wang J and Wang W 2007 Chin. Phys. 16 868
|
[3] |
Alsenoy C V, Kulp S, Siam K, Klimkowski V J, Ewbank J D and Sch"afer L 1988 J. Mol. Struct. 181 169
|
[4] |
Gronert S and O'Hair R A J 1995 J. Am. Chem. Soc. bf 117 2071
|
[5] |
Miao R, Jin C, Yang G, Hong J, Zhao C and Zhu L 2005 J. Phys. Chem. A 109 2340
|
[6] |
Lambie B, Ramaekers R and Maes G 2004 J. Phys. Chem. A 108 10426
|
[7] |
Noguera M, Rodr'higuez-Santiago L, Sodupe M and Bertran J 2001 J. Mol. Struct. (THEOCHEM) 537 307
|
[8] |
Zhang Y, Yin W, Zhang P, Xu C Y, Han S H and Li J C 2005 it Chin. Phys. 14 2585
|
[9] |
Pecul M 2006 Chem. Phys. Lett. 418 1
|
[10] |
Wang X R and Zheng H P 2009 Chin. Phys. B 18 1968
|
[11] |
Cannington P H and Ham N S 1983 J. Electron. Spectrosc. Relat. Phenom. 32 139
|
[12] |
T-Falzon C and Wang F 2005 J. Chem. Phys. 123 214307
|
[13] |
T-Falzon C and Wang F (ICCS 2006) Proceedings of the International Conference on Computational Science, Lecture Notes in Computer Science 3993, Part III (Berlin, Heidelberg: Springer-Verlag) May 28--31, 2006 p82
|
[14] |
T-Falzon C, Wang F and Pang W N 2006 J. Phys. Chem. B bf 110 9713
|
[15] |
Jones D B, Wang F, Winkler D A and Brunger M J 2006 Biophys. Chem. 121 105
|
[16] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery Jr J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson, G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 GAUSSIAN 03, Revision B.01, 2003 Gaussian Inc., Pittsburgh, PA
|
[17] |
Becke A D 1993 J. Chem. Phys. 98 5648
|
[18] |
Krishnan R, Frish M J and Pople J A 1980 J. Chem. Phys. 72 4244
|
[19] |
Stepanian S G, Reva I D, Radchenko E D and Adamowicz L 1999 J. Phys. Chem. A 103 4404
|
[20] |
Tian S X 2006 J. Phys. Chem. A 110 3961
|
[21] |
Tian S X and Yang J L 2006 Angew. Chem. Int. Ed. 45 2069
|
[22] |
Tian S X 2005 J. Chem. Phys. 123 244310
|
[23] |
Ortiz J V 1996 J. Chem. Phys. 104 7599
|
[24] |
Wang K D, Shan X and Chen X J 2009 J. Mol. Struct. (THEOCHEM) 909 91
|
[25] |
Bawagan A 1987 Evaluation of Wavefuncitons by Electron Momentum Spectroscopy (Ph.D. Thesis) (Vancouver: University of British Columbia)
|
[26] |
Weigold E and McCarthy I E 1991 Rep. Prog. Phys. bf 54 789
|
[27] |
Weigold E and McCarthy I E 1999 Electron Momentum Spectroscopy (New York: Kluwer-Acdemic)
|
[28] |
Biemann K, Seibl J and Gapp F 1961 J. Am. Chem. Soc. bf 83 3795
|
[29] |
Herrera B, Dolgounitcheva O, Zakrzewski V G, Toro-labbe A and Ortiz J V 2004 J. Phys. Chem. A 108 11703
|
[30] |
Shan X, Chen X J, Zhou L X, Li Z J, Liu T, Xue X X and Xu K Z 2006 J. Chem. Phys. 125 154307
|
[31] |
Liu K, Ning C G and Deng J K 2010 Chin. Phys. Lett. bf27 073403
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|