|
|
Feshbach resonances in an ultracold mixture of 87Rb and 40K |
Wang Peng-Jun(王鹏军), Fu Zheng-Kun(付正坤), Chai Shi-Jie(柴世杰), and Zhang Jing(张靖)† |
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We report the experimental preparations of the absolute ground states of 87Rb and 40K atoms (|F=1, mF=1,〉+ |F=9/2, mF=-9/2〉) by means of the radio-frequency and microwave adiabatic rapid passages, and the observation of magnetic Feshbach resonances in an ultracold mixture of bosonic 87Rb and fermionic 40K atoms between 0 T and 6.0 × 10-2 T, including 7 homonuclear and 4 heteronuclear Feshbach resonances. The resonances are identified by the abrupt trap loss of atoms induced by the strong inelastic three-body collisions. These Feshbach resonances should enable the experimental control of interspecies interactions.
|
Received: 16 March 2011
Revised: 11 April 2011
Accepted manuscript online:
|
PACS:
|
34.20.Cf
|
(Interatomic potentials and forces)
|
|
32.80.Pj
|
|
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
Fund: Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 10725416), the National Basic Research Program of China (Grant No. 2006CB921101), the National Natural Science Foundation of China for Excellent Research Team, China (Grant No. 60821004). |
Cite this article:
Wang Peng-Jun(王鹏军), Fu Zheng-Kun(付正坤), Chai Shi-Jie(柴世杰), and Zhang Jing(张靖) Feshbach resonances in an ultracold mixture of 87Rb and 40K 2011 Chin. Phys. B 20 103401
|
[1] |
Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature (London) 392 151
|
[2] |
Courteille Ph, Freeland R S, Heinzen D J, van Abeelen F A and Verhaar B J 1998 Phys. Rev. Lett. 81 69
|
[3] |
Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A and Wieman C E 2001 Nature (London) 412 295
|
[4] |
Claussen N R, Donley E A, Thompson S T and Wieman C E 2002 Phys. Rev. Lett. 89 010401
|
[5] |
Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature (London) 417 150
|
[6] |
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
|
[7] |
Donley E A, Claussen N R, Thompson S T and Wieman C E 2002 it Nature (London) 417 529
|
[8] |
Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
|
[9] |
Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, N"agerl H C and Grimm R 2006 it Nature (London) 440 315
|
[10] |
Stoof H T C, Koelman J M V A and Verhaar B J 1988 Phys. Rev. B 38 4688
|
[11] |
Tiesinga E, Verhaar B J and Stoof H T C 1993 Phys. Rev. A 47 4114
|
[12] |
Ouerdane H, Jamieson M J, Vrinceanu D and Cavagnero M J 2003 J. Phys. B: At. Mol. Opt. Phys. 36 4055
|
[13] |
Zhang J C, Sun J F and Liu Y F 2011 it Chin. Phys. B 20 023401
|
[14] |
Hanna T M, Tiesinga E and Julienne P S 2009 Phys. Rev. A 79 040701
|
[15] |
Tiecke T G, Goosen M R, Walraven J T M and Kokkelmans S J J M F 2010 Phys. Rev. A 82 042712
|
[16] |
Wang P J, Chen H X, Xiong D Z, Yu X D, Gao F and Zhang J 2008 Acta Phys. Sin. 57 4840 (in Chinese)
|
[17] |
Xiong D Z, Chen H X, Wang P J, Yu X D, Gao F and Zhang J 2008 Chin. Phys. Lett. 25 843
|
[18] |
Xiong D Z, Wang P J, Fu Z K and Zhang J 2010 Opt. Express 18 1649
|
[19] |
Xiong D Z, Wang P J, Fu Z K, Chai S J and Zhang J 2010 Chin. Opt. Lett. 8 627
|
[20] |
Marte A, Volz T, Schuster J, Dürr S, Rempe G, van Kempen E G M and Verhaar B J 2002 Phys. Rev. Lett. 89 093201
|
[21] |
Erhard M, Schmaljohann H, Kronj"ager J, Bongs K and Sengstock K 2004 Phys. Rev. A 69 032705
|
[22] |
van Kempen E G M, Kokkelmans S J J M F, Heinzen D J and Verhaar B J 2002 Phys. Rev. Lett. 88 093201
|
[23] |
Yurovsky V A and Ben-Reuven A 2003 Phys. Rev. A 67 050701
|
[24] |
Ferrari G, Inguscio M, Jastrzebski W, Modugno G and Roati G 2002 Phys. Rev. Lett. 89 053202
|
[25] |
Ferlaino F, D'Errico C, Roati G, Zaccanti M, Inguscio M and Modugno G 2006 Phys. Rev. A 73 040702
|
[26] |
Klempt C, Henninger T, Topic O, Will J, Ertmer W, Tiemann E and Arlt J 2007 Phys. Rev. A 76 020701
|
[27] |
Simoni A, Zaccanti M, D'Errico C, Fattori M, Roati G, Inguscio M and Modugno G 2008 Phys. Rev. A 77 052705
|
[28] |
Zemke W T, C^ot'e R and Stwalley W C 2005 Phys. Rev. A 71 062706
|
[29] |
Pashov A, Docenko O, Tamanis M, Ferber R, Knökel H and Tiemann E 2008 Phys. Rev. A 76 022511
|
[30] |
Regal C A, Ticknor C, Bohn J L and Jin D S 2003 it Phys. Rev. Lett. 90 053201
|
[31] |
Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
|
[32] |
Ticknor C, Regal C A, Jin D S and Bohn J L 2004 it Phys. Rev. A 69 042712
|
[33] |
Günter K, Stöferle T, Moritz H, Köhl M and Esslinger T 2005 Phys. Rev. Lett. 95 230401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|