Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 103301    DOI: 10.1088/1674-1056/20/10/103301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Observation of intermolecular double-quantum coherence signal dips in nuclear magnetic resonance

Shen Gui-Ping(沈桂平), Cai Cong-Bo(蔡聪波), Cai Shu-Hui(蔡淑惠), and Chen Zhong(陈忠)
Department of Electronic Science and Communications Engineering, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
Abstract  The correlated spectroscopy revamped by asymmetric Z-gradient echo detection (CRAZED) sequence is modified to investigate intermolecular double-quantum coherence nuclear magnetic resonance signal dips in highly polarized spin systems. It is found that the occurrence of intermolecular double-quantum coherence signal dips is related to sample geometry, field inhomogeneity and dipolar correlation distance. If the field inhomogeneity is refocused, the signal dip occurs at a fixed position whenever the dipolar correlation distance approaches the sample dimension. However, the position is shifted when the field inhomogeneity exists. Experiments and simulations are performed to validate our theoretic analysis. These signal features may offer a unique way to investigate porous structures and may find applications in biomedicine and material science.
Keywords:  nuclear magnetic resonance      distant dipolar field      intermolecular double-quantum coherence      signal dip  
Received:  26 January 2011      Revised:  06 April 2011      Accepted manuscript online: 
PACS:  33.25.+k (Nuclear resonance and relaxation)  
  31.30.jp (Electron electric dipole moment)  
  34.80.Pa (Coherence and correlation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10875101 and 11074209) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090121110030).

Cite this article: 

Shen Gui-Ping(沈桂平), Cai Cong-Bo(蔡聪波), Cai Shu-Hui(蔡淑惠), and Chen Zhong(陈忠) Observation of intermolecular double-quantum coherence signal dips in nuclear magnetic resonance 2011 Chin. Phys. B 20 103301

[1] Warren W S, Richter W, Andreotti A H and Farmer II B T 1993 Science 262 2005
[2] Zanker P P, Schmiedeskamp J, Spiess H W and Acosta R H 2008 Phys. Rev. Lett. 100 213001
[3] Shen G P, Cai C B, Cai S H and Chen Z 2009 Chin. Phys. B 18 4797
[4] Qian Y X, Zhao T, Hue Y K, Ibrahim T S and Boada F E 2010 Magn. Reson. Med. 63 543
[5] Li J Q, Wang Y, Jiang Y, Xie H B and Li G Y 2009 Magn. Reson. Imaging 27 988
[6] Branca R T, Chen Y M, Mouraviev V, Galiana G, Jenista E R, Kumar C, Leuschner C and Warren W S 2009 Magn. Reson. Med. 61 937
[7] Tang X, Hong L M and Zu D L 2010 Chin. Phys. B 19 078702
[8] Schneider J T and Faber C 2008 Magn. Reson. Med. 60 850
[9] Liu Y, Li J Q and Li G Y 2008 Magn. Reson. Mat. Phys. Biol. Med. 21 199
[10] Eliav U and Navon G 2008 J. Magn. Reson. 190 149
[11] Fu R Q 2009 Chem. Phys. Lett. 483 147
[12] Zhou X, Luo J, Sun X P, Zeng X Z, Ding S W, Liu M L and Zhan M S 2004 Phys. Rev. B 70 052405
[13] Ren T T, Luo J, Sun X P and Zhan M S 2009 Chin. Phys. B 18 4711
[14] Capuani S, Branca R T, Alesiani A and Maraviglia B 2003 Magn. Reson. Imaging 21 413
[15] Cho J H, Ahn S, Lee C, Hong K S, Chung K C, Chang S K, Cheong C and Warren W S 2007 Magn. Reson. Imaging 25 626
[16] Li Z F, Li W S, Li X J, Pei F K, Li Y X and Lei H 2007 Magn. Reson. Imaging 25 412
[17] Zhou X, Sun X P, Luo J, Zhan M S and Liu M L 2009 J. Magn. Reson. 196 200
[18] Zhang L P, Zheng Z, Liang J C, Le X Y, Zou C, Liu H L and Liu Y 2008 Chin. Phys. B 17 4619
[19] Richter W, Lee S H, Warren W S and He Q H 1995 Science 267 654
[20] Alessandri F M, Capuani S and Maraviglia B 2002 J. Magn. Reson. 156 72
[21] Capuani S, Curzi F, Alessandri F M, Maraviglia B and Bifone A 2001 Magn. Reson. Med. 46 683
[22] Bouchard L S, Wehrli F W, Chin C L and Warren W S 2005 J. Magn. Reson. 176 27
[23] Robyr P and Bowtell R 1997 J. Chem. Phys. 106 467
[24] Wong C K and Zhong J H 2009 Concepts Magn. Reson. Part A 34 76
[25] Chen S, Zhu X Q, Cai S H and Chen Z 2008 Chin. Phys. B 17 915
[26] Lin T, Sun H J, Chen Z, You R Y and Zhong J H 2007 Magn. Reson. Imaging 25 1409
[27] Warren W S, Ahn S, Mescher M, Garwood M, Ugurbil K, Richter W, Rizi R R, Hopkins J and Leigh J S 1998 Science 281 247
[28] Cai C B, Lin Y Q, Cai S H, Chen Z and Zhong J H 2008 J. Magn. Reson. 193 94
[29] Huang Y Q, Zhang W, Cai S H, Zhong J H and Chen Z 2010 Chem. Phys. Lett. 492 174
[30] Chen Z, Chen Z W and Zhong J H 2002 J. Chem. Phys. 117 8426
[31] Enss T, Ahn S and Warren W S 1999 Chem. Phys. Lett. 305 101
[32] Charles-Edwards G D, Payne G S, Leach M O and Bifone A 2004 J. Magn. Reson. 166 215
[1] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[2] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[3] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[4] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[5] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[6] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[7] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[8] Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets
Zheng Li(李政), Guo-qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077404.
[9] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[10] NMR evidence of charge fluctuations in multiferroic CuBr2
Rui-Qi Wang(王瑞琦), Jia-Cheng Zheng(郑家成), Tao Chen(陈涛), Peng-Shuai Wang(王朋帅), Jin-Shan Zhang(张金珊), Yi Cui(崔祎), Chong Wang(王冲), Yuan Li(李源), Sheng Xu(徐胜), Feng Yuan(袁峰), Wei-Qiang Yu(于伟强). Chin. Phys. B, 2018, 27(3): 037502.
[11] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[12] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[13] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
[14] Interfacial transport in lithium-ion conductors
Shaofei Wang(王少飞) and Liquan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 018202.
[15] Fast high-resolution nuclear magnetic resonance spectroscopy through indirect zero-quantum coherence detection in inhomogeneous fields
Ke Han-Ping (柯汉平), Chen Hao (陈浩), Lin Yan-Qin (林雁勤), Wei Zhi-Liang (韦芝良), Cai Shu-Hui (蔡淑惠), Zhang Zhi-Yong (张志勇), Chen Zhong (陈忠). Chin. Phys. B, 2014, 23(6): 063201.
No Suggested Reading articles found!