Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 014101    DOI: 10.1088/1674-1056/20/1/014101
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

All-dielectric left-handed metamaterial based on dielectric resonator: design, simulation and experiment

Yang Yi-Ming(杨一鸣)a),Wang Jia-Fu(王甲富)a),Xia Song(夏颂)b),Bai Peng(柏鹏)c), Li Zhe(李哲)c),Wang Jun(王军)b), Xu Zhuo(徐卓)b),and Qu Shao-Bo(屈绍波)a)b)
a College of Science, Air Force Engineering University, Xi'an 710051, China; b Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China; c Synthetic Electronic Information System Research Department, Air Force Engineering University, Xi'an 710051, China
Abstract  Dipoles with Lorentz-type resonant electromagnetic responses can realise negative effective parameters in their negative resonant region. The electric dipole and magnetic dipole can realise, respectively, negative permittivity and negative permeability, so both the field distribution forms of electric and magnetic dipoles are fundamentals in designing left-handed metamaterial. Based on this principle, this paper studies the field distribution in high-permittivity dielectric materials. The field distributions at different resonant modes are analysed based on the dielectric resonator theory. The origination and influence factors of the electric and magnetic dipoles are confirmed. Numerical simulations indicate that by combining dielectric cubes with different sizes, the electric resonance frequency and magnetic resonance frequency can be superposed. Finally, experiments are carried out to verify the feasibility of all-dielectric left-handed metamaterial composed by this means.
Keywords:  all-dielectric left-handed metamaterial      dielectric resonator      magnetic dipole      electric dipole  
Received:  25 May 2010      Revised:  22 June 2010      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  76.20.+q (General theory of resonances and relaxations)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 50632030, 60871027 and 10804130), in part by the National Basic Research Program of China (Grant No. 2009CB613306) and the Natural Science Foundation of Shaanxi Province, China (Grant No. SJ08F01).

Cite this article: 

Yang Yi-Ming(杨一鸣), Wang Jia-Fu(王甲富), Xia Song(夏颂), Bai Peng(柏鹏), Li Zhe(李哲), Wang Jun(王军), Xu Zhuo(徐卓), and Qu Shao-Bo(屈绍波) All-dielectric left-handed metamaterial based on dielectric resonator: design, simulation and experiment 2011 Chin. Phys. B 20 014101

[1] Veselago Sov V G 1968 Phys. Usp. 10 509
[2] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075
[3] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[4] Xi S, Chen H, Wu B I and Kong J A 2008 Prog. Electromagne. Res. 84 279
[5] Ran L, Huangfu J, Chen H, Zhang X, Cheng K, Grzegorczyk T M and Kong J A 2005 Prog. Electromagn. Res. 51 249
[6] Yang Y M, Qu S B, Wang J F and Xu Z 2009 Acta Phys. Sin. 58 1031 (in Chinese)
[7] Wang J F, Qu S B, Xu Z, Zhang J Q, Ma H, Yang Y M, Wu X and Lu L 2010 Acta Phys. Sin. 59 4018 (in Chinese)
[8] Wang J F, Qu S B, Xu Z, Zhang J Q, Ma H, Yang Y M and Gu C 2009 Acta Phys. Sin. 58 3224 (in Chinese)
[9] Holloway C L, Kuester E F, Baker-Jarvis J and Kabos P 2003 IEEE Trans. Antennas Propag. bf 51 2596
[10] Vendik O G and Gashinova M S 2004 34th European Microwave Conference 2004 bf3 (London: Horizon House) p1209
[11] Zhao Q, Du B, Kang L, Zhao H J, Xie Q, Li B, Zhang X, Zhou J, Li L T and Meng Y G 2008 Appl. Phys. Lett. 92 051106
[12] Xu F, Bai Y, Qiao L J, Zhao H J and Zhou J 2009 Appl. Phys. Lett. 95 114104
[13] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley-Interscience)
[14] Sihvola A 1999 Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Ser. 47 (Stevenage, Herts, UK: The Institution of Electrical Engineers)
[15] Lewin L 1947 Proc. Inst. Electr. Eng. 94 65
[16] Kajfez D and Guillon P 1998 Dielectric Resonators (2nd edition) (Atlanta: Noble Publishing Corporation) p9
[17] Mongia R K and Bhat B 1985 Electron. Lett. 21 479
[1] Energy levels and magnetic dipole transition parameters for the nitrogen isoelectronic sequence
Mu-Hong Hu(胡木宏), Nan Wang(王楠), Pin-Jun Ouyang(欧阳品均),Xin-Jie Feng(冯新杰), Yang Yang(杨扬), and Chen-Sheng Wu(武晨晟). Chin. Phys. B, 2022, 31(9): 093101.
[2] M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤ Z ≤ 94
Ju Meng(孟举), Wen-Xian Li(李文显), Ji-Guang Li(李冀光), Ze-Qing Wu(吴泽清), Jun Yan(颜君), Yong Wu(吴勇), and Jian-Guo Wang(王建国). Chin. Phys. B, 2022, 31(1): 013101.
[3] Photoluminescence of green nanophosphors Sr2MgSi2O7 doped with Tb3+ under 374-nm excitation
Bo-Shi Mu(牟博石), Yi Zhang(张熠), Qing-Feng Bian(边庆丰), Cheng-Ren Li(李成仁), Zhi-Chao Li(李志超), Yun-Ting Chu(褚云婷), Feng Zhao(赵峰), and Jing-Chang Sun(孙景昌). Chin. Phys. B, 2021, 30(12): 123201.
[4] Angular dependence of vertical force and torque when magnetic dipole moves vertically above flat high-temperature superconductor
Yong Yang(杨勇), Shuai-Jie Yang(杨帅杰), Wen-Li Yang(杨文莉), and Yun-Yi Wu(吴云翼). Chin. Phys. B, 2021, 30(12): 127401.
[5] Simulation of anyons by cold atoms with induced electric dipole moment
Jian Jing(荆坚), Yao-Yao Ma(马瑶瑶), Qiu-Yue Zhang(张秋月), Qing Wang(王青), Shi-Hai Dong(董世海). Chin. Phys. B, 2020, 29(8): 080303.
[6] Equivalent magnetic dipole method used to design gradient coil for unilateral magnetic resonance imaging
Zheng Xu(徐征), Xiang Li(李想), Pan Guo(郭盼), Jia-Min Wu(吴嘉敏). Chin. Phys. B, 2018, 27(5): 058702.
[7] Shim coil design for Halbach magnet by equivalent magnetic dipole method
Jia-Min Wu(吴嘉敏), Zheng Xu(徐征), Pan Guo(郭盼), Jin-Feng Qi(戚金凤), Yu-Cheng He(贺玉成). Chin. Phys. B, 2018, 27(10): 104101.
[8] All-dielectric frequency selective surface design based on dielectric resonator
Zheng-Bin Wang(王正斌), Chao Gao(高超), Bo Li(李波), Zhi-Hang Wu(吴知航), Hua-Mei Zhang(张华美), Ye-Rong Zhang (张业荣). Chin. Phys. B, 2016, 25(6): 068101.
[9] Electric dipole moment function and line intensities for the ground state of carbon monxide
Chen Hua-Jun (陈华君), Wu Jie (吴杰), Liu Hao (刘浩), Cheng Xin-Lu (程新路). Chin. Phys. B, 2015, 24(8): 083102.
[10] Electric dipole moments of lithium atoms in Rydberg states
Dong Hui-Jie (董慧杰), Huang Ke-Shu (黄可树), Li Chang-Yong (李昌勇), Zhao Jian-Ming (赵建明), Zhang Lin-Jie (张临杰), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2014, 23(9): 093202.
[11] Static electric dipole polarizability of lithium atom in Debye plasmas
Ning Li-Na (宁丽娜), Qi Yue-Ying (祁月盈). Chin. Phys. B, 2012, 21(12): 123201.
[12] Simulation of dielectric resonator for high-Tc radio frequency superconducting quantum interference device
Gao Ji(高吉), Yang Tao(杨涛), Ma Ping(马平), and Dai Yuan-Dong(戴远东). Chin. Phys. B, 2010, 19(6): 067402.
[13] Hybrid CIS-DFT method to study electric field effects on electronic excited states of ethylene
Ma Mei-Zhong (马美仲), Zhu Zheng-He (朱正和), Chen Xiao-Jun (陈晓军), Xu Guo-Liang (徐国亮), Zhang Yong-Bin (张永彬), Mao Hua-Ping (毛化平), Shen Xiao-Hong (谌晓洪). Chin. Phys. B, 2005, 14(6): 1101-1107.
[14] The experiment on the saturation polarization of Rb vapour
Huang Xiang-You (黄湘友), You Pei-Lin (游佩林), Du Wei-Min (杜为民). Chin. Phys. B, 2004, 13(1): 11-13.
[15] Hyperfine structure of singly ionized lanthanum and praseodymium
Ma Hong-Liang (马洪良). Chin. Phys. B, 2002, 11(9): 905-909.
No Suggested Reading articles found!