Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010502    DOI: 10.1088/1674-1056/20/1/010502
GENERAL Prev   Next  

Horseshoe and entropy in a fractional-order unified system

Li Qing-Du(李清都)a)b)†, Chen Shu(陈述)a), and Zhou Ping(周平)b)
a Key Laboratory of Networked Control and Intelligent Instrument of Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; b Institute for Nonlinear Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  This paper studies chaotic dynamics in a fractional-order unified system by means of topological horseshoe theory and numerical computation. First it finds four quadrilaterals in a carefully-chosen Poincar'e section, then shows that the corresponding map is semiconjugate to a shift map with four symbols. By estimating the topological entropy of the map and the original time-continuous system, it provides a computer assisted verification on existence of chaos in this system, which is much more convincible than the common method of Lyapunov exponents. This new method can potentially be used in rigorous studies of chaos in such a kind of system. This paper may be a start for proving a given fractional-order differential equation to be chaotic.
Keywords:  chaos      topological horseshoe      fractional-order system      generalised Lorenz system  
Received:  02 June 2010      Revised:  14 July 2010      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10926072 and 10972082), Chongqing Municipal Education Commission (Grant No. KJ080515) and Natural Science Foundation Project of CQ CSTC, China (Grant No. 2008BB2409).

Cite this article: 

Li Qing-Du(李清都), Chen Shu(陈述), and Zhou Ping(周平) Horseshoe and entropy in a fractional-order unified system 2011 Chin. Phys. B 20 010502

[1] Kilbas A, Srivastava H and Trujillo J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier Science Ltd)
[2] L"u J 2002 International Journal of Bifurcation and Chaos 12 2917
[3] Li C and Peng G 2004 Chaos, Solitons and Fractals 22 443
[4] Grigorenko I and Grigorenko E 2003 Phys. Rev. Lett. 91 034101
[5] Wu X, Li J and Chen G 2008 Journal of the Franklin Institute 345 392
[6] Wang X Y and He Y J 2008 Acta Phys. Sin. 57 1485 (in Chinese)
[7] Zhang R X, Yang S P and Liu Y L 2010 Acta Phys. Sin. 59 1549 (in Chinese)
[8] Shao S Q, Gao X and Liu X W 2007 Acta Phys. Sin. 56 6815 (in Chinese)
[9] Zhang R X and Yang S P 2009 Chin. Phys. B 18 3295
[10] Chen X R, Liu C X and Wang F Q 2008 Chin. Phys. B 17 1664
[11] Zhou P, Cheng X F and Zhang N Y 2008 Chin. Phys. B 17 3252
[12] Zhang C F, Gao J F and Xu L 2007 Acta Phys. Sin. 56 5124 (in Chinese)
[13] Chen X R, Liu C X, Wang F Q and Li Y X 2008 Acta Phys. Sin. 57 1416 (in Chinese)
[14] Lu J J and Liu C X 2007 Chin. Phys. 16 1586
[15] Tavazoei M and Haeri M 2007 Phys. Lett. A 367 102
[16] Zgliczynski P 1997 Nonlinearity 10 243
[17] Li Q and Yang X 2006 Journal of Physics A: Mathematical and General 39 9139
[18] Galias Z and Zgliczy'nski P 1998 Physica D: Nonlinear Phenomena 115 165
[19] Yang X and Li Q 2006 Chaos, Solitons and Fractals 27 25
[20] Wiggins S 2003 Introduction to Applied Nonlinear Dynamical Systems and Chaos (New York: Springer Verlag)
[21] Yang X and Tang Y 2004 Chaos, Solitons and Fractals 19 841
[22] Sun K H, Ren J and Qiu S S 2008 Journ al of South China University of Technology (Natural Science Edition) 36 6 (in Chinese)
[23] Li Q 2008 A toolbox for finding horseshoes in 2D maps. In: http://www.mathworks.com/matlabcentral/fileexchange/ 14075
[24] Li Q and Yang X S 2009 International Journal of Bifurcation and Chaos 20 467
[25] Lohner R 1992 Computational Ordinary Differential Equations (London: Oxford University Press) p425
[26] Diethelm K, Ford N J and Freed A D 2002 Nonlinear Dynamics 29 3
[27] Eckmann J and Ruelle D 1985 Rev. Mod. Phys. 57 617 endfootnotesize
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[13] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!