ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Preparation of steady-state entanglement via a laser-excited resonant interaction |
Cheng Guang-Ling (程广玲), Chen Ai-Xi (陈爱喜), Geng Jun (耿珺), Zhong Wen-Xue (钟文学), Deng Li (邓黎) |
Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China |
|
|
Abstract In this paper we propose a scheme, in which two-mode entanglement in a steady state is produced by using two lasers to resonantly drive a single four-level atom embedded inside a two-mode optical cavity. In this scheme, atomic coherence induced by a classical laser plays an important role in the process of preparing the entangled state. With the coupling of a strong control field, direct two-photon transition is generated and the relatively weak pump field induces the parametric interaction between two photons, which makes them entangled with each other. By numerical calculation, we find that the degree of entanglement depends strongly on the Rabi frequencies of the classical laser fields and the cavity losses.
|
Received: 03 January 2012
Revised: 08 February 2012
Accepted manuscript online:
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11047182, 11165008, and 11065007), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20114BAB202001 and 2010GQW0011), and the Science Foundation of East China Jiaotong University, China (Grant Nos. 10JC03 and 10JC06). |
Corresponding Authors:
Chen Ai-Xi
E-mail: aixichen@ecjtu.jx.cn
|
Cite this article:
Cheng Guang-Ling (程广玲), Chen Ai-Xi (陈爱喜), Geng Jun (耿珺), Zhong Wen-Xue (钟文学), Deng Li (邓黎) Preparation of steady-state entanglement via a laser-excited resonant interaction 2012 Chin. Phys. B 21 084206
|
[1] |
Braunstein S L and Loock P 2005 Rev. Mod. Phys. 77 513
|
[2] |
Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869
|
[3] |
García-Patrón R and Cerf N J 2006 Phys. Rev. Lett. 97 190503
|
[4] |
Koike S, Takahashi H, Yonezawa H, Takei N, Braunstein S L, Aoki T and Furusawa A 2006 Phys. Rev. Lett. 96 060504
|
[5] |
Liu J M, Li J and Guo G C 2002 Chin. Phys. 11 339
|
[6] |
Wu Y and Deng L 2004 Opt. Lett. 29 1144
|
[7] |
Sintayehu T 2012 Chin. Phys. B 21 014204
|
[8] |
Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 69 063803
|
[9] |
Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
|
[10] |
Zhang Y, Wang H, Li X, Jing J, Xie C and Peng K 2000 Phys. Rev. A 62 023813
|
[11] |
Pereira S F, Ou Z Y and Kimble H J 2000 Phys. Rev. A 62 042311
|
[12] |
Yang J, Zhao T M, Zhang H, Yang T, Bao X H and Pan J W 2011 Chin. Phys. B 20 024202
|
[13] |
Li G X, Tan H T and Macovei M 2007 Phys. Rev. A 76 53827
|
[14] |
Du S W, Oh E, Wen J M and Rubin M H 2007 Phys. Rev. A 76 013803
|
[15] |
Cheng G L, Hu X M, Zhong W X and Li Q 2008 Phys. Rev. A 78 033811
|
[16] |
Zhu Y Z, Hu X M, Wang F and Li J Y 2010 Chin. Phys. Lett. 27 044210
|
[17] |
Xiong H, Scully M O and Zubairy M S 2005 Phys. Rev. Lett. 94 023601
|
[18] |
Tan H T, Zhu S Y and Zubairy M S 2005 Phys. Rev. A 72 022305
|
[19] |
Qamar S, Ghafoor F, Hillery M and Zubairy M S 2008 Phys. Rev. A 77 062308
|
[20] |
Qamar S, Amri M A and Zubairy M S 2009 Phys. Rev. A 80 033818
|
[21] |
Fang A P, Chen Y L, Li F L, Li H R and Zhang P 2010 Phys. Rev. A 81 012323
|
[22] |
Zhou L, Xiong H and Zubairy M S 2006 Phys. Rev. A 74 022321
|
[23] |
Kiffner M, Zubairy M S, Evers J and Keitel C H 2007 Phys. Rev. A 75 033816
|
[24] |
Lü X Y, Liu J B, Si L G and Yang X X 2008 J. Phys. B 41 035501
|
[25] |
Hao X Y, Lü X Y, Liu L and Yang X X 2009 J. Phys. B 42 105502
|
[26] |
Wu Y and Yang X 2005 Phys. Rev. A 71 053806
|
[27] |
Wu Y, Saldana J and Zhu Y F 2003 Phys. Rev. A 67 013811
|
[28] |
Harris S E and Hau L V 1999 Phys. Rev. Lett. 82 4611
|
[29] |
Wu Y and Deng L 2004 Phys Rev. Lett. 93 143904
|
[30] |
Wu Y and Deng L 2004 Opt. Lett. 29 2064
|
[31] |
Yang W X, Hou J M and Lee R K 2008 Phys. Rev. A 77 033838
|
[32] |
Wu Y, Payne M G, Hagley E W and Deng L 2004 Opt. Lett. 29 2294
|
[33] |
Chen A X, Wang Z P and Deng L 2009 Mod. Phys. Lett. B 23 2123
|
[34] |
Wu Y and Yang X 2005 Opt. Lett. 30 311
|
[35] |
Wu Y and Yang X 2004 Phys. Rev. A 70 053818
|
[36] |
Frogley M D, Dynes J F, Beck M, Faist J and Phillips C C 2006 Nature Materials 5 175
|
[37] |
Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) Chap.2
|
[38] |
Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
|
[39] |
Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
|
[40] |
James D F V 2000 Fortschr. Phys. 48 823
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|