Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(12): 124212    DOI: 10.1088/1674-1056/19/12/124212
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Hollow Gaussian beams in strongly nonlocal nonlinear media

Yang Zhen-Jun(杨振军), Lu Da-Quan(陆大全), Hu Wei(胡巍)†ger, Zheng Yi-Zhou(郑一周), and Gao Xing-Hui(高星辉)
Laboratory of Photonic Information Technology, South China Normal University, Guangzhou 510631, China
Abstract  The propagation of hollow Gaussian beams in strongly nonlocal nonlinear media is studied in detail. Two analytical expressions are derived. For hollow Gaussian beams, the intensity distribution always evolves periodically. However the second-order moment beam width can keep invariant during propagation if the input power is equal to the critical power. The interaction of two hollow Gaussian beams and the vortical hollow Gaussian beams are also discussed. The vortical hollow Gaussian beams with an appropriate topological charge can keep their shapes invariant during propagation.
Keywords:  strong nonlocality      hollow Gaussian beam      beam propagation  
Received:  04 May 2010      Revised:  02 June 2010      Accepted manuscript online: 
PACS:  42.30.Kq (Fourier optics)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by National Natural Science Foundation of China (Grant Nos. 10804033 and 10674050), Program for Innovative Research Team of Higher Education of Guangdong Province of China (Grant No. 06CXTD005), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200805740002), and the Natural Science Foundation of Hebei Province of China (Grant No. F2009000321).

Cite this article: 

Yang Zhen-Jun(杨振军), Lu Da-Quan(陆大全), Hu Wei(胡巍), Zheng Yi-Zhou(郑一周), and Gao Xing-Hui(高星辉) Hollow Gaussian beams in strongly nonlocal nonlinear media 2010 Chin. Phys. B 19 124212

[1] Kuga T, Torii Y, Shiokawa N, Hirano T, Shimizu Y and Sasada H 1997 Phys. Rev. Lett. 78 4713
[2] Ovchinnikov Y B, Manek I and Grimm R 1997 Phys. Rev. Lett. 79 2225
[3] Song Y, Milam D and Hill W T 1999 Opt. Lett. 24 1805
[4] Ito H, Sakaki K, Jhe W and Ohtsu M 1997 Phys. Rev. A 56 712
[5] Liu Z, Zhao H, Liu J, Lin J, Ahmad M A and Liu S 2007 Opt. Lett. 32 2076
[6] Anand S 2009 Opt. Commun. 282 1335
[7] Cai Y J, Lu X H and Lin Q 2003 Opt. Lett. 28 1084
[8] Deng D M 2005 Phys. Lett. A 341 352
[9] Gao Z H and Lü B D 2006 Phys. Lett. A 23 106
[10] Wu G H, Lou Q H and Zhou J 2008 Opt. Express 16 6417
[11] Liu Z J, Dai J M, Sun X G and Liu S T 2008 Opt. Express 16 19926
[12] Cai Y J and Zhang L 2006 Opt. Commun. 265 607
[13] Cai Y J and He S L 2006 J. Opt. Soc. Am. A 23 1410
[14] Zheng C W 2006 Phys. Lett. A 355 156
[15] Cai Y J and He S L 2006 Opt. Express 14 1353
[16] Deng D G, Yu H, Xu S Q, Shao J D and Fan Z X 2008 Opt. Commun. 281 202
[17] Skupin S, Saffman M and Królikowski W 2007 Phys. Rev. Lett. 98 263902
[18] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404
[19] Peccianti M, Conti C and Assanto G 2005 Opt. Lett. 30 415
[20] Hu W, Zhang T, Guo Q, Li X and Lan S 2006 Appl. Phys. Lett. 89 071111
[21] Rotschild C, Cohen O, Manela O and Segev M 2005 Phys. Rev. Lett. 95 213904
[22] Guo Q, Luo B, Yi F H, Chi S and Xie Y Q 2004 Phys. Rev. E 69 016602
[23] Lu D Q, Hu W, Zheng Y J, Liang Y B, Cao L G, Lan S and Guo Q 2008 Phys. Rev. A 78 043815
[24] Lu D Q and Hu W 2009 Phys. Rev. A 80 083818
[25] Deng D M and Guo Q 2008 J. Opt. A: Pure Appl. Opt. 10 035101
[26] Deng D M, Guo Q and Hu W 2009 Phys. Rev. A 79 023803
[27] Kaminer I, Rotschild C, Manela O and Segev M 2007 Opt. Lett. 32 3209
[28] Desyatnikov A S, Sukhorukov A A and Kivshar Y S 2005 Phys. Rev. Lett. 95 203904
[29] Lopez-Aguayo S, Desyatnikov A S and Kivshar Y S 2006 Opt. Lett. 31 1100
[30] Ding N and Guo Q 2009 Chin. Phys. B 18 4298
[31] Shen M, Xi N, Kong Q, Ge L J, Shi J L and Wang Q 2009 Chin. Phys. B 18 2822
[32] Ge L J, Wang Q, Shen M, Shi J L, Kong Q and Hou P 2009 Chin. Phys. B 18 616
[33] Chen L X, Lu D Q, Hu W, Yang Z J, Cao W W, Zheng R and Guo Q 2010 Acta Phys. Sin. 59 2537 (in Chinese)
[34] Zheng Y J, Xuan W T, Lu D Q, Ouyang S G, Hu W and Guo Q 2010 em Acta Phys. Sin. 59 1075 (in Chinese)
[35] Song F J and Jutamulia S 2001 Advanced Optical Information Processing (Beijing: Peking University Press) pp. 96–103 (in Chinese)
[36] Gradshteyn I S and Ryzhik I M 2000 Table of Integrals, Series, and Products (6th edn.) (Singapore: Academic Press) pp. 486, 698, 701, 902
[37] Bélanger P A 1991 Opt. Lett. 16 196
[38] Desyatnikov A S and Kivshar Y S 2002 Phys. Rev. Lett. 88 053901
[1] Constructing the three-qudit unextendible product bases with strong nonlocality
Bichen Che(车碧琛), Zhao Dou(窦钊), Xiubo Chen(陈秀波), Yu Yang(杨榆), Jian Li(李剑), and Yixian Yang(杨义先). Chin. Phys. B, 2022, 31(6): 060302.
[2] M2-factor of high-power laser beams through a multi-apertured ABCD optical system
Xiangmei Zeng(曾祥梅), Meizhi Zhang(张美志), Dongmei Cao(曹冬梅), Dingyu Sun(孙鼎宇), Hua Zhou(周花). Chin. Phys. B, 2020, 29(6): 064206.
[3] Transversal reverse transformation of anomalous hollow beams in strongly isotropic nonlocal media
Dai Zhi-Ping (戴志平), Yang Zhen-Jun (杨振军), Zhang Shu-Min (张书敏), Pang Zhao-Guang (庞兆广), You Kai-Ming (游开明). Chin. Phys. B, 2014, 23(7): 074208.
[4] Passive polarization rotator based on silica photonic crystal fiber for 1.31-μm and 1.55-μm bands via adjusting the fiber length
Chen Lei (陈雷), Zhang Wei-Gang (张伟刚), Wang Li (王丽), Bai Zhi-Yong (白志勇), Zhang Shan-Shan (张珊珊), Wang Biao (王标), Yan Tie-Yi (严铁毅), Jonathan Sieg. Chin. Phys. B, 2014, 23(10): 104220.
[5] Beam evolutions of solitons in strongly nonlocal media with fading optical lattices
Dai Zhi-Ping (戴志平), Lu Shi-Zhuan (陆世专), You Kai-Ming (游开明). Chin. Phys. B, 2013, 22(1): 014211.
[6] Generalization and propagation of spiraling Bessel beams with a helical axicon
Sun Qiong-Ge(孙琼阁), Zhou Ke-Ya (周可雅), Fang Guang-Yu (方光宇), Liu Zheng-Jun(刘正君), and Liu Shu-Tian (刘树田) . Chin. Phys. B, 2012, 21(1): 014208.
[7] Elliptical Gaussian solitons in synthetic nonlocal nonliear media
Cheng Shuang (程爽), Wang Qi (王奇), Ge Li-Juan (葛丽娟), Shi Jie-Long (施解龙), Ding Hai-Xia (丁海霞), Shen Ming (申明). Chin. Phys. B, 2011, 20(5): 054206.
[8] Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres
Yuan Jin-Hui(苑金辉), Sang Xin-Zhu(桑新柱), Yu Chong-Xiu(余重秀), Xin Xiang-Jun(忻向军), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(2): 024213.
[9] High-performance evanescently-coupled uni-traveling-carrier photodiodes
Zhang Yun-Xiao(张云霄), Liao Zai-Yi(廖栽宜), and Wang Wei(王圩). Chin. Phys. B, 2009, 18(6): 2393-2397.
[10] Effect of interstitial air holes on Bragg gratings in photonic crystal fibre with a Ge-doped core
Zhang Hui-Jia(张慧嘉), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2009, 18(2): 630-635.
[11] Design of novel three port optical gates scheme for the integration of large optical cavity electroabsorption modulators and evanescently-coupled photodiodes
Liao Zai-Yi(廖栽宜), Yang Hua(杨华), and Wang Wei(王圩) . Chin. Phys. B, 2008, 17(7): 2557-2561.
[12] M2 factor of four-petal Gaussian beam
Zhou Guo-Quan(周国泉) and Fan Yan(樊艳). Chin. Phys. B, 2008, 17(10): 3708-3712.
[13] Analytical structure of Hermite Gaussian beam in far field
Zhou Guo-Quan(周国泉), Chen Liang(陈亮), and Chu Xiu-Xiang(储修祥). Chin. Phys. B, 2007, 16(9): 2709-2715.
[14] The solutions of the strongly nonlocal spatial solitons with several types of nonlocal response functions
Ouyang Shi-Gen(欧阳世根), Guo Qi(郭旗), Lan Sheng(兰胜), and Wu Li-Jun(吴立军). Chin. Phys. B, 2007, 16(8): 2325-2330.
[15] Semi-vectorial analysis of a compact wavelength demultiplexer based on the tapered multimode interference coupler
Xiao Jin-Biao(肖金标), Liu Xu(刘旭), Cai Chun(蔡纯), and Sun Xiao-Han(孙小菡). Chin. Phys. B, 2007, 16(7): 2015-2022.
No Suggested Reading articles found!