Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 106801    DOI: 10.1088/1674-1056/19/10/106801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

A new model for the formation of contact angle and contact angle hysteresis

Gong Mao-Gang(公茂刚), Liu Yuan-Yue(刘远越), and Xu Xiao-Liang(许小亮)
Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The formation mechanism of the contact angle and the sliding angle for a liquid drop on a solid surface plays an important role in producing hydrophobic surfaces. A new half soakage model is established in this paper as a substitute for Wenzel (complete soakage) and Cassie (no soakage) models. The model is suited to many solid surfaces, whether they are hydrophilic or hydrophobic, or even superhydrophobic. Based on the half soakage model, we analyse two surfaces resembling lotus, i.e. taper-like surface and corona-like surface. Furthermore, this new model is used to establish a quantitative relationship between the sliding angle and the parameters of surface morphology.
Keywords:  contact angle      half soakage model      contact angle hysteresis  
Received:  20 March 2010      Revised:  26 April 2010      Accepted manuscript online: 
PACS:  68.03.Cd (Surface tension and related phenomena)  
  68.08.-p (Liquid-solid interfaces)  
  68.35.B- (Structure of clean surfaces (and surface reconstruction))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB302900) and the National Natural Science Foundation of China (Grant No. 50872129).

Cite this article: 

Gong Mao-Gang(公茂刚), Liu Yuan-Yue(刘远越), and Xu Xiao-Liang(许小亮) A new model for the formation of contact angle and contact angle hysteresis 2010 Chin. Phys. B 19 106801

[1] Blossey R 2003 Nature Mater. bf2 301
[2] Young T 1805 Phil. Trans. R. Soc. bf95 65
[3] Wenzel R N 1936 Ind. Eng. Chem. bf28 988
[4] Cassie A B D and Baxter S 1944 Trans. Faraday Soc. bf40 546
[5] Gong M G, Xu X L, Cao Z L, Liu Y Y and Zhu H M 2009 Acta Phys. Sin. bf58 1885 (in Chinese)
[6] Zhu L, Jiang M F, Ning Z Y, Du J L and Wang P J 2009 Acta Phys. Sin. bf58 6430 (in Chinese)
[7] Gong M G, Xu X L, Yang Z, Liu Y S and Liu L 2010 Chin. Phys. B bf19 056701
[8] Onda T, Shibuichi S, Satoh N and Tsujii K 1996 Langmuir bf12 2125
[9] Ma K, Li H, Zhang H, Xu X L, Gong M G and Yang Z 2009 Chin. Phys. B bf18 1942
[10] Gong M G, Xu X L, Yang Z, Liu Y Y, Lü H F and Lü L 2009 Nanotechnology bf20 165602
[11] Lafuma A and Quere D 2003 Nature Mater. bf2 457
[12] Johnson R E and Dettre R H 1964 Adv. Chem. Ser. bf43 112
[13] Bico J, Tordeux C and Quere D 2001 Europhys. Lett. bf55 214
[14] Extrand C W 2002 Langmuir bf18 7991
[15] Marmur A 2003 Langmuir bf19 8343
[16] He B, Patankar N A and Lee J 2003 Langmuir bf19 4999
[17] Patankar N A 2004 Langmuir bf20 7097
[18] Ishino C, Okumura K and Quere D 2004 Europhys. Lett. bf68 419
[19] Extrand C W 2004 Langmuir bf20 5013
[20] Carbone G and Mangialardi L 2005 Euro. Phys. J. E bf16 67
[21] Zheng Q S, Yu Y and Zhao Z H 2005 Langmuir bf21 12207
[22] Yoshimitsu Z, Nakajima A, Watanabe T and Hashimoto K 2002 Langmuir bf18 5818
[23] Chen W, Fadeev A Y, Hsieh M C, Oner D, Youngblood J P and McCarthy T J 1999 Langmuir bf15 3395
[24] Miwa M, Nakajima A, Fujishima A, Hashimoto K and Watanabe T 2000 Langmuir bf16 5754
[25] Ramos S M M, Charlaix E and Benyagoub A 2003 Surf. Sci. bf540 355
[26] Furmidge C G L 1962 J. Colloid. Sci. bf17 309
[27] Adam N K and Jessop G 1925 J. Chem. Soc. London bf127 1863
[28] Kamusewitz H and Possart W 2003 Appl. Phys. A bf76 899
[29] Cao X P and Jiang Y M 2005 Acta Phys. Sin. bf54 2202 (in Chinese)
[30] Oner D and McCarthy T J 2000 Langmuir bf16 7777
[31] Solga A, Cerman Z, Striffler B F, Spaeth M and Barthlott W 2007 Bioinspiration and Biomimetics bf2 126
[32] Liu J L, Feng X Q, Wang G F and Yu S W 2007 J. Phys.: Condens. Matter bf19 356002
[33] Collet P, Coninck J De, Dunlop F and Regnard A 1997 Phys. Rev. Lett. bf79 3704
[1] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
[2] Dielectrowetting actuation of droplet: Theory and experimental validation
Yayan Huang(黄亚俨), Rui Zhao(赵瑞), Zhongcheng Liang(梁忠诚), Yue Zhang(张月), Meimei Kong(孔梅梅), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 106801.
[3] Molecular simulation study of the adhesion work for water droplets on water monolayer at room temperature
Mengyang Qu(屈孟杨), Bo Zhou(周波), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(10): 106804.
[4] Wetting failure condition on rough surfaces
Feng-Chao Yang(杨冯超), Xiao-Peng Chen(陈效鹏). Chin. Phys. B, 2019, 28(4): 044701.
[5] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[6] A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2017, 26(8): 084701.
[7] Mechanism of contact angle saturation and an energy-based model for electrowetting
Rui Zhao(赵瑞), Zhong-Cheng Liang(梁忠诚). Chin. Phys. B, 2016, 25(6): 066801.
[8] Contact angle hysteresis in electrowetting on dielectric
Zhao Rui (赵瑞), Liu Qi-Chao (刘启超), Wang Ping (王评), Liang Zhong-Cheng (梁忠诚). Chin. Phys. B, 2015, 24(8): 086801.
[9] Dynamic surface wettability of three-dimensional graphene foam
Huang Wen-Bin (黄文斌), Wang Guang-Long (王广龙), Gao Feng-Qi (高凤岐), Qiao Zhong-Tao (乔中涛), Wang Gang (王刚), Chen Min-Jiang (陈闽江), Tao Li (陶立), Deng Ya (邓娅), Sun Lian-Feng (孙连峰). Chin. Phys. B, 2014, 23(4): 046802.
[10] Simulation solution for micro droplet impingementon a flat dry surface
Sun Zhen-Hai(孙震海) and Han Rui-Jing(韩瑞津). Chin. Phys. B, 2008, 17(9): 3185-3188.
No Suggested Reading articles found!