Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(7): 2873-2877    DOI: 10.1088/1674-1056/18/7/042
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Modified KdV equation for solitary Rossby waves with $\beta$ effect in barotropic fluids

Song Jian(宋健)a)† and Yang Lian-Gui(杨联贵)b)
a College of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China; b College of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  This paper uses the weakly nonlinear method and perturbation method to deal with the quasi-geostrophic vorticity equation, and the modified Korteweg-de Vries(mKdV) equations describing the evolution of the amplitude of solitary Rossby waves as the change of Rossby parameter $\beta(y)$ with latitude $y$ is obtained.
Keywords:  nonlinear Rossby waves      mKdV equation      $\beta$ effect      perturbation method  
Received:  02 December 2008      Revised:  19 December 2008      Accepted manuscript online: 
PACS:  47.35.Fg (Solitary waves)  
  92.10.Hm (Ocean waves and oscillations)  
  47.32.-y (Vortex dynamics; rotating fluids)  
Fund: Project supported by the Educational Department of Inner Mongolia (NJZY: 08005) and Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences (Grant No KLOCAW0805).

Cite this article: 

Song Jian(宋健) and Yang Lian-Gui(杨联贵) Modified KdV equation for solitary Rossby waves with $\beta$ effect in barotropic fluids 2009 Chin. Phys. B 18 2873

[1] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[2] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[3] Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇). Chin. Phys. B, 2021, 30(10): 100502.
[4] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[5] Ground-state energy of beryllium atom with parameter perturbation method
Feng Wu(吴锋), Lijuan Meng(孟丽娟). Chin. Phys. B, 2018, 27(9): 093101.
[6] Soliton excitations in a polariton condensate with defects
Abderahim Mahmoud Belounis, Salem Kessal. Chin. Phys. B, 2018, 27(1): 010307.
[7] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[8] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[9] K—P—Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity
A N Dev, M K Deka, J Sarma, D Saikia, N C Adhikary. Chin. Phys. B, 2016, 25(10): 105202.
[10] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[11] Perturbation method of studying the EI Niño oscillation with two parameters using delay sea–air oscillator model
Du Zeng-Ji (杜增吉), Lin Wan-Tao (林万涛), Mo Jia-Qi (莫嘉琪 ). Chin. Phys. B, 2012, 21(9): 090201.
[12] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[13] Multiple flux difference effect in the lattice hydrodynamic model
Wang Tao(王涛), Gao Zi-You(高自友), and Zhao Xiao-Mei(赵小梅) . Chin. Phys. B, 2012, 21(2): 020512.
[14] Riemann theta function periodic wave solutions for the variable-coefficient mKdV equation
Zhang Yi (张翼), Cheng Zhi-Long (程智龙), Hao Xiao-Hong (郝晓红). Chin. Phys. B, 2012, 21(12): 120203.
[15] Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields
Yuan Lin (袁琳), Zhao Yun-Hui (赵云辉), Xu Jun (徐军), Zhou Ben-Hu (周本胡), Hai Wen-Hua (海文华). Chin. Phys. B, 2012, 21(10): 103103.
No Suggested Reading articles found!