Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020512    DOI: 10.1088/1674-1056/21/2/020512
GENERAL Prev   Next  

Multiple flux difference effect in the lattice hydrodynamic model

Wang Tao(王涛)a)b), Gao Zi-You(高自友) a)†, and Zhao Xiao-Mei(赵小梅) a)‡
1. MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China ;
2. College of Automation & Electronic Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
Abstract  Considering the effect of multiple flux difference, an extended lattice model is proposed to improve the stability of traffic flow. The stability condition of the new model is obtained by using linear stability theory. The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow. The nonlinear analysis is also conducted by using a reductive perturbation method. The modified KdV (mKdV) equation near the critical point is derived and the kink-antikink solution is obtained from the mKdV equation. Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably, which is in line with the analytical result.
Keywords:  flux difference      lattice hydrodynamic model      traffic flow      mKdV equation  
Received:  05 June 2011      Revised:  25 September 2011      Accepted manuscript online: 
PACS:  05.70.Fh (Phase transitions: general studies)  
  05.70.Jk (Critical point phenomena)  
  64.60.F- (Equilibrium properties near critical points, critical exponents)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 70631001 and 71071012) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2009JBM045 and 2011YJS235).
Corresponding Authors:  Gao Zi-You,zygao@bjtu.edu.cn;Zhao Xiao-Mei,xmzhao@bjtu.edu.cn     E-mail:  zygao@bjtu.edu.cn;xmzhao@bjtu.edu.cn

Cite this article: 

Wang Tao(王涛), Gao Zi-You(高自友), and Zhao Xiao-Mei(赵小梅) Multiple flux difference effect in the lattice hydrodynamic model 2012 Chin. Phys. B 21 020512

[1] Chowdhury D, Santen L and Schadschneider A 2000 Phys. Rep. 329 199
[2] Helbing D 2001 Rev. Mod. Phys. 73 1067
[3] Kerner B S 2004 Introduction to Modern Traffic Flow Theory and Control (Berlin: Springer)
[4] Nagatani T 2002 Rep. Prog. Phys. 65 1331
[5] Helbing D 2000 Traffic and Granular Flow'99 (Heidelberg: Springer)
[6] Jia B, Gao Z Y, Li K P and Li X G 2007 Models and Simulations of Traffic System Based on the Theory of Cellular Automaton (Beijing: Science Press) (in Chinese)
[7] Herman R, Montrol E W and Potts R B 1959 Oper. Res. 7 86
[8] Newell G F 1961 Oper. Res. 9 209
[9] Bando M, Hasebe K, Nakayama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[10] Treiber M, Hennecke A and Helbing D 2000 Phys. Rev. E 62 1805
[11] Tang T Q, Li C Y and Huang H J 2010 Phys. Lett. A 374 3951
[12] Kurtze D A and Hong D C 1995 Phys. Rev. E 52 218
[13] Komatsu T and Sasa S 1995 Phys. Rev. E 52 5574
[14] Nagatani T and Nakanishi K 1998 Phys. Rev. E 57 6415
[15] Nagatani T 1999 Phys. Rev. E 60 6395
[16] Lenz H, Wagner C K and Sollacher R 1998 Eur. Phys. J. B 7 331
[17] Ge H X, Dai S Q, Dong L Y and Xue Y 2005 Phys. Rev. E 70 066134
[18] Hasebe K, Nakayama A and Sugiyama Y 2003 Phys. Rev. E 68 026102
[19] Hasebe K, Nakayama A and Sugiyama Y 2004 Phys. Rev. E 69 017103
[20] Xue Y, Dong L Y and Dai S Q 2001 Acta Phys. Sin. 50 444 (in Chinese)
[21] Nagatani T 1998 Physica A 261 599
[22] Nagatani T 1999 Physica A 264 581
[23] Ge H X, Dai S Q, Xue Y and Dong L Y 2005 Phys. Rev. E 71 066119
[24] Ge H X and Cheng R J 2008 Physica A 387 6952
[25] Helbing D and Tilch B 1998 Phys. Rev. E 58 133
[26] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 066134
[27] Zhao X M and Gao Z Y 2005 Eur. Phys. J. B 47 145
[28] Wang T, Gao Z Y and Zhao X M 2006 Acta Phys. Sin. 55 634 (in Chinese)
[29] Tian J F, Jia B, Li X G and Gao Z Y 2010 Chin. Phys. B 19 040303
[30] Sun D H, Tian C and Liu W N 2010 Chin. Phys. B 19 080514
[31] Ge H X, Cheng R J and Dai S Q 2005 Physica A 357 466
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[3] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[4] A novel car-following model by sharing cooperative information transmission delayed effect under V2X environment and its additional energy consumption
Guang-Han Peng(彭光含), Te-Ti Jia(贾特提), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2022, 31(5): 058901.
[5] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[6] Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
Yuan Gong(公元) and Wen-Xing Zhu(朱文兴). Chin. Phys. B, 2022, 31(2): 024502.
[7] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[8] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[9] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[10] A new car-following model with driver's anticipation effect of traffic interruption probability
Guang-Han Peng(彭光含). Chin. Phys. B, 2020, 29(8): 084501.
[11] A macroscopic traffic model based on weather conditions
Zawar H. Khan, Syed Abid Ali Shah, T. Aaron Gulliver. Chin. Phys. B, 2018, 27(7): 070202.
[12] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[13] Traffic flow velocity disturbance characteristics and control strategy at the bottleneck of expressway
Jun-Wei Zeng(曾俊伟), Yong-Sheng Qian(钱勇生), Xu-Ting Wei(魏谞婷), Xiao Feng(冯骁). Chin. Phys. B, 2018, 27(12): 124502.
[14] Stability analysis of traffic flow with extended CACC control models
Ya-Zhou Zheng(郑亚周), Rong-Jun Cheng(程荣军), Siu-Ming Lo(卢兆明), Hong-Xia Ge(葛红霞). Chin. Phys. B, 2016, 25(6): 060506.
[15] A new traffic model on compulsive lane-changing caused by off-ramp
Xiao-He Liu(刘小禾), Hung-Tang Ko(柯鸿堂), Ming-Min Guo(郭明旻), Zheng Wu(吴正). Chin. Phys. B, 2016, 25(4): 048901.
No Suggested Reading articles found!