Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields

Yuan Lin (袁琳)^{a}, Zhao Yun-Hui (赵云辉)^{b}, Xu Jun (徐军)^{c}, Zhou Ben-Hu (周本胡)^{a}, Hai Wen-Hua (海文华)^{d}

a Department of Physics, Shaoyang University, Shaoyang 422000, China; b Department of Primary Education, Changsha Normal College, Changsha 410100, China; c Center of Experimental Teaching for Common Basic Courses, South China Agriculture University, Guangzhou 510642, China; d Department of Physics, Hunan Normal University, Changsha 410082, China

Abstract A variational-integral perturbation method (VIPM) is established by combining the variational perturbation with the integral perturbation. The first-order corrected wave functions are constructed, and the second-order energy corrections for the ground state and several lower excited states are calculated by applying the VIPM to the hydrogen atom in a strong uniform magnetic field. Our calculations demonstrated that the energy calculated by the VIPM only shows a negative value, which indicates that the VIPM method is more accurate than the other methods. Our study indicated that the VIPM can not only increase the accuracy of the results but also keep the convergence of the wave functions.

Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875039) and the Foundation of the Science and Technology of Hunan Province, China (Grant No. 2011CK3013).

Corresponding Authors:
Yuan Lin
E-mail: xxbylxllww@sina.com

Cite this article:

Yuan Lin (袁琳), Zhao Yun-Hui (赵云辉), Xu Jun (徐军), Zhou Ben-Hu (周本胡), Hai Wen-Hua (海文华) Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields 2012 Chin. Phys. B 21 103103

[1]

Lev Benjamin L, Meyer Edmund R, Hudson Eric R, Saywer Brian C, Bohn John L and Ye Jun 2006 Phys. Rev. A 74 061402

[2]

Kleczewski Adam, Hoffman Matthew R, Sherman J A, Magnusmb Eric, Blinovabd B and Fortson E N 2012 Phys. Rev. A 85043418

[3]

Horsewill A J and Abuokhumra S M M 2012 Phys. Rev. B 85 064512

[4]

Formaset F G, Shlyaptsev V N and Rocca J J 1996 Phys. Rev. A 542474

[5]

Garstang R H and Kemic S B 1974 Phys. Rev. A 85 103

[6]

Zhao J J, Wang X F and Qiao H X 2011 Chin. Phys. B 20 053101

[7]

Cohen R, Lodenquai J and Ruderman M 1970 Phys. Rev. Lett. 25 467

[8]

Galindo A and Pascual P 1976 Nuovo Cimento B 34 155

[9]

Ruder H, Wunner G, Herold H and Reinecke M 1985 J. Phys. B 14 L45

[10]

Wunnder G 1986 J. Phys. B 19 1623

[11]

Grozdanov T P and Taylor H S 1986 J. Phys. B 19 4075

[12]

Chen A C 1984 Phys. Rev. A 29 2225

[13]

Adams B G, Čižek J and Paldus J 1988 Adv. Quantum Chem. 19 1

[14]

Silverstone H J and Moats R K 1981 Phys. Rev. A 23 1645

[15]

Čižek J and Vrscay E R 1982 Int. J. Quantum Chem. 21 27

[16]

Turbiner A V 1981 Z. Phys. A 308 111

[17]

Le J C Guillou and Zinn-Justin J 1983 Ann. Phys. (NY) 147 57

[18]

Turbiner A V 1984 J. Phys. A: Math. Gen. 17 859

[19]

Janke W 1990 Phys. Rev. A 41 6071

[20]

Johnson B R, Scheibner K F and Farrelly D 1983 Phys. Rev. Lett. 51 2280

[21]

Arteca G A, Fernandez F M, Meson A M and Castro E A 1984 Physica A 128 253

[22]

Fernandez F M and Castro E A 1985 Int. J. Quantum Chem. 28 603

[23]

Fernandez F M, Ogilvie J F and Tipping R H 1987 J. Phys. A: Math. Gen. 20 3777

[24]

Xu M, Linghu R F, Li Y F, Yang X D and Wang X L 2012 Phys. Rev. A 85 033412

[25]

Guth E 1929 Z. Phys. 58 368

[26]

Schiff L I and Snyder H 1939 Phys. Rev. 55 59

[27]

Praddaude H C 1972 Phys. Rev. A 6 1321

[28]

Killingbeck J 1981 J. Phys. B 14 L461

[29]

Machet B and Vysotsky M I 2011 Phys. Rev. D 83 025022

[30]

Efstathiou K, Lukina O V and Sadovskii D A 2008 Phys. Rev. Lett. 101 253003

[31]

Smith E R, Henry R J W, Surmelian G L, O'Connell R F and Rajagopal A K 1972 Phys. Rev. D 6 3700

[32]

Brandi H S 1975 Phys. Rev. A 19 1835

[33]

Peek J M and Katriel J 1980 Phys. Rev. A 21 413

[34]

Cohen M and Herman G 1981 J. Phys. B 14 2761

[35]

Jason A C Gallas 1984 Phys. Rev. A 29 132

[36]

Caswell W E and lepage G P 1986 Phys. Rev. Lett. 167 437

[37]

Baldicchi M, Nesterenko A V, Prosperi G M and Simoto C 2008 Phys. Rev. 77 034013

[38]

RutKowski A J 1998 J. Phys. B: At. Mol. Opt. Phys. 19 179

[39]

Koehler T R 1968 Phys. Rev. 165 942

[40]

Cea P and Tedesco L 1997 Phys. Rev. D 55 4967

[41]

Hai W H, Feng M, Zhu X W, Shi L, Guo K L and Fang X M 2000 Phys. Rev. A 61 052105

[42]

Hai W H, Zhu X W, Feng M, Shi L, Gao K L and Fang X M 2001 J. Phys. A: Math. Gen. 34 L79

[43]

Zhao Y F, Hai W H, Zhao C L and Luo X P 2008 Chin. Phys. B 17 1720

[44]

Hai W H 1998 Chin. Phys. Lett. 15 472

[45]

Lee C H, Hai W H, Shi L, Zhu X W and Gao K L 2001 Phys. Rev. A 64 053604

[46]

Hai W H, Lee C H, Chong G H and Shi L 2002 Phys. Rev. E 66 026202

[47]

Hai W H, Huang H and Gao K L 2003 J. Phys. B 36 3055

[48]

Hai W H, Feng M, Zhu X W, Shi L, Gao K L and Fang X M 1999 J. Phys. A: Math. Gen. 32 8265

Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.