Abstract We study the evolutionary snowdrift game in a heterogeneous Newman--Watts small-world network. The heterogeneity of the network is controlled by the number of hubs. It is found that the moderate heterogeneity of the network can promote the cooperation best. Besides, we study how the hubs affect the evolution of cooperative behaviours of the heterogeneous Newman--Watts small-world network. Simulation results show that both the initial states of hubs and the connections between hubs can play an important role. Our work gives a further insight into the effect of hubs on the heterogeneous networks.
Received: 24 January 2008
Revised: 27 February 2008
Accepted manuscript online:
Fund: Project supported by the National
Basic Research Program of China (No 2006CB705500), by the National
Natural Science Foundation of China (Grant Nos 60744003, 10635040,
10532060 and 10472116), and the Specialized Research Fund for the
Doctoral Program of Higher Education of China.
Cite this article:
Yang Han-Xin(杨涵新), Gao Kun(高坤), Han Xiao-Pu(韩筱璞), and Wang Bing-Hong(汪秉宏) Evolutionary snowdrift game on heterogeneous Newman--Watts small-world network 2008 Chin. Phys. B 17 2759
Characteristics of vapor based on complex networks in China Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.