Please wait a minute...
Chinese Physics, 2006, Vol. 15(9): 2002-2006    DOI: 10.1088/1009-1963/15/9/017
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Resolution and noise in ghost imaging with classical thermal light

Cheng Jing(程静)a)b), Han Shen-Sheng(韩申生)a), and Yan Yi-Jing(严以京)b)
a Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; b Department of Chemistry, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
Abstract  The resolution and classical noise in ghost imaging with a classical thermal light are investigated theoretically. For ghost imaging with a Gaussian Schell model source, the dependences of the resolution and noise on the spatial coherence of the source and the aperture in the imaging system are discussed and demonstrated by using numerical simulations. The results show that an incoherent source and a large aperture will lead to a good image quality and small noise.
Keywords:  ghost imaging      thermal light      signal-to-noise rate  
Received:  16 September 2005      Revised:  05 May 2006      Accepted manuscript online: 
PACS:  25.70.Mn (Projectile and target fragmentation)  
  29.40.Rg (Nuclear emulsions)  
  25.70.Pq (Multifragment emission and correlations)  
  21.30.-x (Nuclear forces)  
  27.20.+n (6 ≤ A ≤ 19)  
Fund: Project supported by the Shanghai Rising-Star Programme of China, the National Natural Science Foundation of China (Grant No 10404031), the K.C. Wong Education Foundation (Hong Kong), and the Research Grants Council of the Hong Kong Government of China (Grant No 604804).

Cite this article: 

Cheng Jing(程静), Han Shen-Sheng(韩申生), and Yan Yi-Jing(严以京) Resolution and noise in ghost imaging with classical thermal light 2006 Chinese Physics 15 2002

[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[4] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[5] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[6] Non-Rayleigh photon statistics of superbunching pseudothermal light
Chao-Qi Wei(卫超奇), Jian-Bin Liu(刘建彬), Xue-Xing Zhang(张学星), Rui Zhuang(庄睿), Yu Zhou(周宇), Hui Chen(陈辉), Yu-Chen He(贺雨晨), Huai-Bin Zheng(郑淮斌), and Zhuo Xu(徐卓). Chin. Phys. B, 2022, 31(2): 024209.
[7] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[8] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[9] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[10] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[11] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[12] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[13] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[14] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[15] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
No Suggested Reading articles found!