Please wait a minute...
Chinese Physics, 2005, Vol. 14(8): 1604-1607    DOI: 10.1088/1009-1963/14/8/024
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Stabilizing effect of ion pressure gradient on magnetic curvature-driven drift modes located at rational surface of tokamak plasma

Wang Ai-Ke (王爱科)
Southwestern Institute of Physics, Chengdu 610041, China
Abstract  In the fluid model, we derive a dispersion relation for the toroidal drift modes of tokamak plasmas, including the ion pressure gradient and the magnetic field gradient and curvature. It is shown that the magnetic field gradient and curvature (MFGC) can cause instabilities at the rational surface, which are of toroidicity-induced (TI) modes. On the other hand, it is discovered that the ion pressure gradient can stabilize the present MFGC instabilities. The critical threshold of ion pressure gradient, which makes the growth rate reduced to zero, is obtained both analytically and numerically.
Keywords:  magnetic field gradient and curvature      drift mode      stabilization  
Received:  29 October 2004      Revised:  02 December 2004      Accepted manuscript online: 
PACS:  52.35.Kt (Drift waves)  
  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10375019 and 10135020).

Cite this article: 

Wang Ai-Ke (王爱科) Stabilizing effect of ion pressure gradient on magnetic curvature-driven drift modes located at rational surface of tokamak plasma 2005 Chinese Physics 14 1604

[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[3] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[4] Dynamic stabilization of atomic ionization in a high-frequency laser field with different initial angular momenta
Di-Yu Zhang(张頔玉), Yue Qiao(乔月), Wen-Di Lan(蓝文迪), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军), and Da-Jun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103202.
[5] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[6] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[7] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[8] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
[9] Stable continuous-wave single-frequency intracavity frequency-doubled laser with intensity noise suppressed in audio frequency region
Ying-Hao Gao(高英豪), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2019, 28(9): 094204.
[10] Non-crossover sub-Doppler DAVLL in selective reflection scheme
Lin-Jie Zhang(张临杰), Hao Zhang(张好), Yan-Ting Zhao(赵延霆), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2019, 28(8): 084211.
[11] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[12] Dynamic stabilization of Na atom in an intense pulsed laser field
Xiao-Li Guo(郭晓丽), Song-Feng Zhao(赵松峰), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2018, 27(4): 043201.
[13] Modulation transfer spectroscopy based on acousto-optic modulator with zero frequency shift
Chen-Fei Wu(吴晨菲), Xue-Shu Yan(颜学术), Li-Xun Wei(卫立勋), Pei Ma(马沛), Jian-Hui Tu(涂建辉), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(11): 114203.
[14] Stabilizing effect of plasma discharge on bubbling fluidized granular bed
Hu Mao-Bin (胡茂彬), Dang Sai-Chao (党赛超), Ma Qiang (马强), Xia Wei-Dong (夏维东). Chin. Phys. B, 2015, 24(7): 074502.
[15] A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator
Zhang Yan-Yan (张颜艳), Yan Lu-Lu (闫露露), Zhao Wen-Yu (赵文宇), Meng Sen (孟森), Fan Song-Tao (樊松涛), Zhang Long (张龙), Guo Wen-Ge (郭文阁), Zhang Shou-Gang (张首刚), Jiang Hai-Feng (姜海峰). Chin. Phys. B, 2015, 24(6): 064209.
No Suggested Reading articles found!