Please wait a minute...
Chinese Physics, 2004, Vol. 13(12): 2064-2070    DOI: 10.1088/1009-1963/13/12/015
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Effect of astigmatism on spectral switches of partially coherent beams

Zhao Guang-Pu(赵光普)ab, Xiao Xi (肖希)ab, Lü Bai-Da (吕百达)b 
a Institute of Optoelectronic Information, Yibin University, Yibin 644007, China; b Institute of Laser Physics and Chemistry, Sichuan University, Chengdu 610064, China
Abstract  A detailed study of the spectrum of partially coherent beams diffracted at an astigmatic aperture lens is performed. Considerable attention is paid to the effect of astigmatism on spectral switches of polychromatic Gaussian Schell-model beams. It is shown that the spectral switch can also take place in the vicinity of intensity minimum in a geometrical focal plane for the astigmatic case, but the astigmatism of the lens and the spatial correlation of the beam affect the critical position $u_{\rm c}$, spectral minimum $S_{\rm min}$, and transition height Δ of spectral switches.
Keywords:  modern optics      spectral switch      astigmatic lens      aperture      polychromatic Gaussian Schell-model (GSM) beam  
Received:  22 April 2004      Revised:  22 May 2004      Accepted manuscript online: 
PACS:  42.15.Fr (Aberrations)  
  42.79.Bh (Lenses, prisms and mirrors)  
  42.25.Fx (Diffraction and scattering)  
  42.25.Kb (Coherence)  
Fund: Project supported by the Foundation of Education Commission of Sichuan Province, China (Grant No 2003A166).

Cite this article: 

Zhao Guang-Pu (赵光普), Xiao Xi (肖希), Lü Bai-Da (吕百达) Effect of astigmatism on spectral switches of partially coherent beams 2004 Chinese Physics 13 2064

[1] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[2] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[3] A novel receiver-transmitter metasurface for a high-aperture-efficiency Fabry-Perot resonator antenna
Peng Xie(谢鹏), Guangming Wang(王光明), Binfeng Zong(宗彬锋), and Xiaojun Zou(邹晓鋆). Chin. Phys. B, 2021, 30(8): 084103.
[4] Aperture-averaged scintillation index and fade statistics in weak oceanic turbulence
Hao Wang(王昊), Fu-Zeng Kang(康福增), Xuan Wang(王瑄), Wei Zhao(赵卫), and Shu-Wei Sun(孙枢为). Chin. Phys. B, 2021, 30(6): 064207.
[5] M2-factor of high-power laser beams through a multi-apertured ABCD optical system
Xiangmei Zeng(曾祥梅), Meizhi Zhang(张美志), Dongmei Cao(曹冬梅), Dingyu Sun(孙鼎宇), Hua Zhou(周花). Chin. Phys. B, 2020, 29(6): 064206.
[6] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[7] Optical design of common-aperture multispectral and polarization optical imaging system with wide field of view
Xin Liu(刘鑫), Jun Chang(常军), Shuai Feng(冯帅), Yu Mu(穆郁), Xia Wang(王霞), Zhao-Peng Xu(徐兆鹏). Chin. Phys. B, 2019, 28(8): 084201.
[8] Effect of aperture field distribution on the maximum radiated power at atmospheric pressure
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(11): 115101.
[9] Piecewise spectrally band-pass for compressive coded aperture spectral imaging
Qian Lu-Lu (钱路路), Lü Qun-Bo (吕群波), Huang Min (黄旻), Xiang Li-Bin (相里斌). Chin. Phys. B, 2015, 24(8): 080703.
[10] An accurate and stable method of array element tiling for high-power laser facilities
Mu Jie (母杰), Wang Xiao (王逍), Jing Feng (景峰), Li Zhi-Lin (李志林), Cheng Ning-Bo (程宁波), Zhu Qi-Hua (朱启华), Su Jing-Qin (粟敬钦), Zhang Jun-Wei (张军伟), Zhou Kai-Nan (周凯南), Zeng Xiao-Ming (曾小明). Chin. Phys. B, 2015, 24(7): 074208.
[11] Optimal oxide-aperture for improving the power conversion efficiency of VCSEL arrays
Wang Wen-Juan (王文娟), Li Chong (李冲), Zhou Hong-Yi (周弘毅), Wu Hua (武华), Luan Xin-Xin (栾信信), Shi Lei (史磊), Guo Xia (郭霞). Chin. Phys. B, 2015, 24(2): 024209.
[12] Reciprocity principle-based model for shielding effectiveness prediction of a rectangular cavity with a covered aperture
Jiao Chong-Qing (焦重庆), Li Yue-Yue (李月月). Chin. Phys. B, 2015, 24(10): 104101.
[13] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue (张略), Wang Xiang-Da (王祥达), Liu Xiao-Zhou (刘晓宙), Gong Xiu-Fen (龚秀芬). Chin. Phys. B, 2015, 24(1): 014301.
[14] Ocean internal waves interpreted as oscillation travelling waves in consideration of ocean dissipation
Jiang Zhu-Hui (姜祝辉), Huang Si-Xun (黄思训), You Xiao-Bao (游小宝), Xiao Yi-Guo (肖义国). Chin. Phys. B, 2014, 23(5): 050302.
[15] Extraordinary terahertz transmission through subwavelength spindle-like apertures in NbN film
Zheng Xiao-Rui (郑小睿), Cheng Fei (程飞), Wu Jing-Bo (吴敬波), Jin Biao-Bing (金飚兵), Zhu Bei-Yi (朱北沂). Chin. Phys. B, 2014, 23(1): 014101.
No Suggested Reading articles found!