Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050302    DOI: 10.1088/1674-1056/23/5/050302
GENERAL Prev   Next  

Ocean internal waves interpreted as oscillation travelling waves in consideration of ocean dissipation

Jiang Zhu-Hui (姜祝辉)a b, Huang Si-Xun (黄思训)a, You Xiao-Bao (游小宝)b c, Xiao Yi-Guo (肖义国)b
a College of Meteorology and Oceangraphy, PLA University of Science and Technology, Nanjing 211101, China;
b Beijing Institute of Applied Meteorology, Beijing 100029, China;
c Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  Most studies of the synthetic aperture radar remote sensing of ocean internal waves are based on the solitary wave solutions of the Korteweg-de Vries (KdV) equation, and the dissipative term in the KdV equation is not taken into account. However, the dissipative term is very important, both in the synthetic aperture radar images and in ocean models. In this paper, the traveling-wave structure to characterize the ocean internal wave phenomenon is modeled, the results of numerical experiments are advanced, and a theoretical hypothesis of the traveling wave to retrieve the ocean internal wave parameters in the synthetic aperture radar images is introduced.
Keywords:  synthetic aperture radar      ocean internal waves      oscillation travelling wave      Korteweg-de Vries equation  
Received:  08 October 2013      Revised:  13 January 2014      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  42.79.Qx (Range finders, remote sensing devices; laser Doppler velocimeters, SAR, And LIDAR)  
Fund: Project supported by the High Resolution Earth Observation Major Special Project of Youth Innovation Foundation of China (Grant No. GFZX04060103-3-12) and the National Natural Science Foundation of China (Grant No. 41175025).
Corresponding Authors:  Jiang Zhu-Hui     E-mail:  jiangzhuhui@sina.com
About author:  03.65.Ge; 42.79.Qx

Cite this article: 

Jiang Zhu-Hui (姜祝辉), Huang Si-Xun (黄思训), You Xiao-Bao (游小宝), Xiao Yi-Guo (肖义国) Ocean internal waves interpreted as oscillation travelling waves in consideration of ocean dissipation 2014 Chin. Phys. B 23 050302

[1] Li H Y, He Y J, Du T and Feng Q Z 2007 Chinese Marine Environmental Science 26 583 (in Chinese)
[2] Osborne A R and Burch T L 1980 Science 208 451
[3] Alpers W 1985 Nature 314 245
[4] Liu A K, Chang Y S, Hsu M K and Liang N K 1998 J. Geophys. Res. 103 7995
[5] Zheng Q, Yuan Y, Klenias V and Yan X H 2001 J. Geophys. Res. 106 31415
[6] Ji W J and Tong C M 2013 Chin. Phys. B 22 020301
[7] Song J B 2006 Chin. Phys. 15 2796
[8] Yang J S, Xiao Q M, Huang W G, Fu B, Chen P and Yao L 2005 IEEE Trans. Geosci. Remote Sens. 4 2588
[9] Jackson C R 2009 J. Atmos. Ocean. Tech. 26 2243
[10] Liu A K 1988 J. Geophys. Res. 93 12317
[11] Lamb K G and Yan L 1996 Journal of Physical Oceanography 26 2712
[12] Yuan Y 1997 Chin. J. Oceanol. Limnol. 28 Suppl. 1 (in Chinese)
[13] Amorocho J and DeVries J J 1980 J. Geophys. Res. 85 433
[14] Li H Y, He Y J, Du T and Shen H 2006 IEEE International Conference on Geoscience and Remote Sensing Symposium 1 1319
[15] Huang S X and Zhang M 1993 Advance in Atmospheric Sciences 10 435
[16] Sheng Z and Fang H 2013 Chin. Phys. B 22 029301
[17] Sheng Z 2013 Chin. Phys. B 22 029302
[1] Exact explicit solitary wave and periodic wave solutions and their dynamical behaviors for the Schamel-Korteweg-de Vries equation
Bin He(何斌) and Qing Meng(蒙清). Chin. Phys. B, 2021, 30(6): 060201.
[2] An improved element-free Galerkin method for solving generalized fifth-order Korteweg-de Vries equation
Feng Zhao (冯昭), Wang Xiao-Dong (王晓东), Ouyang Jie (欧阳洁). Chin. Phys. B, 2013, 22(7): 074704.
[3] Propagation and interaction of ion–acoustic solitary waves in a quantum electron–positron–ion plasma
Han Jiu-Ning(韩久宁), Luo Jun-Hua(罗均华), Sun Gui-Hua(孙桂华), Liu Zhen-Lai(刘振来), and Li Shou-Yi(李守义) . Chin. Phys. B, 2011, 20(2): 025202.
[4] Nonlinear acoustic waves in a collisional self-gravitating dusty plasma
Guo Zhi-Rong(郭志荣), Yang Zeng-Qiang(杨增强), Yin Bao-Xiang(殷保祥), and Sun Mao-Zhu(孙茂珠). Chin. Phys. B, 2010, 19(11): 115203.
No Suggested Reading articles found!