Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080703    DOI: 10.1088/1674-1056/24/8/080703
GENERAL Prev   Next  

Piecewise spectrally band-pass for compressive coded aperture spectral imaging

Qian Lu-Lu (钱路路), Lü Qun-Bo (吕群波), Huang Min (黄旻), Xiang Li-Bin (相里斌)
Key Laboratory of Computational Optical Imaging Technology, Academy of Opto-electronics, Chinese Academy of Sciences, Beijing 100094, China
Abstract  Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band.
Keywords:  coded aperture      spectral imaging      compressive sensing      information reconstruction  
Received:  26 January 2015      Revised:  23 March 2015      Accepted manuscript online: 
PACS:  07.60.-j (Optical instruments and equipment)  
  42.30.Wb (Image reconstruction; tomography)  
  29.30.-h (Spectrometers and spectroscopic techniques)  
Fund: Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61225024) and the National High Technology Research and Development Program of China (Grant No. 2011AA7012022).
Corresponding Authors:  Xiang Li-Bin     E-mail:  xiangli@aoe.ac.cn

Cite this article: 

Qian Lu-Lu (钱路路), Lü Qun-Bo (吕群波), Huang Min (黄旻), Xiang Li-Bin (相里斌) Piecewise spectrally band-pass for compressive coded aperture spectral imaging 2015 Chin. Phys. B 24 080703

[1] Smith W L, Zhou D K, Harrison F W, Revercomb H E, Larar A M, Huang H L and Huang B 2001 Proc. SPIE 4151 94
[2] Clark R N, King T V V, Klejwa M, Swayze G A and Vergo N 1990 J. Geophys. Res. 95 12653
[3] Kang U, Berezin V B, Papayan G V, Petrishchev N N and Galagudza M M 2013 J. Opt. Technol. 80 40
[4] Yu K and Hu C M 2013 J. Appl. Rem. Sens. 7 073589
[5] Xiang Li B, Yuan Y and Lü Q B 2009 Acta Phys. Sin. 58 5399 (in Chinese)
[6] Nan Y B, Tang Y, Zhang L J, Chang Y E and Cheng T A 2014 Acta Phys. Sin. 63 010701 (in Chinese)
[7] Wagadarikar A, John R, Willett R and Brady D 2008 Appl. Opt. 47 B44
[8] Wagadarikar A A, Pitsianis N P, Sun X B and Brady D J 2008 Proc. SPIE 7076 707602
[9] Arce G R, Brady D J, Carin L, Arguello H and Kittle D S 2014 IEEE Signal Process. Mag. 31 105
[10] Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289
[11] Candès E J and Wakin M B 2008 IEEE Signal Process. Mag. 25 21
[12] Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese)
[13] Kim S J, Koh K, Lustig M, Boyd S and Gorinevsky D 2007 IEEE J. Sel. Topics Signal Process. 1 606
[14] Cand'es E J, Romberg J and Tao T 2006 IEEE Trans. Inform. Theory 52 489
[15] Wagadarikar A A, Gehm M E and Brady D J 2007 Appl. Opt. 46 4932
[16] Arguello H and Arce G R 2011 J. Opt. Soc. Am. A 28 2400
[17] Meng J, Yin W T, Li H S, Hossain E and Han Z 2011 IEEE J. Sel. Areas Commun. 29 327
[18] Sun B, Zhang J J 2011 Acta Phys. Sin. 60 110701 (in Chinese)
[19] Mallat S and Zhang Z 1993 IEEE Trans. Signal Process. 41 3397
[20] Davenport M A and Wakin M B 2010 IEEE Trans. Inform. Theory 56 4395
[21] Figueiredo M, Nowak R D and Wright S J 2007 IEEE Sel. Top. Signal Process. 1 586
[22] Bioucas-Dias J M and Figueiredo M A T 2007 IEEE Trans. Image Process. 16 2992
[23] Candès E J 2008 C. R. Math. Acad. Sci. Paris 346 589
[24] Kittle D, Choi K, Wagadarikar A A and Brady D J 2010 Appl. Opt. 49 6824
[25] Arguello H, Rueda H, Wu Y H, Prather D W and Arce G R 2013 Appl. Opt. 52 D12
[26] http://personalpages.manchester.ac.uk/staff/david.foster/Hyperspectral_ images_of_natural_scenes_04.html
[27] Zhang C T, Ma Q L and Peng H 2010 Acta Phys. Sin. 59 7623 (in Chinese)
[1] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[2] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[3] Incoherent digital holographic spectral imaging with high accuracy of image pixel registration
Feng-Ying Ma(马凤英), Xi Wang(王茜), Yuan-Zhuang Bu(卜远壮), Yong-Zhi Tian(田勇志), Yanli Du(杜艳丽) , Qiao-Xia Gong(弓巧侠), Ceyun Zhuang(庄策云), Jinhai Li(李金海), and Lei Li(李磊). Chin. Phys. B, 2021, 30(4): 044202.
[4] Optical design of common-aperture multispectral and polarization optical imaging system with wide field of view
Xin Liu(刘鑫), Jun Chang(常军), Shuai Feng(冯帅), Yu Mu(穆郁), Xia Wang(王霞), Zhao-Peng Xu(徐兆鹏). Chin. Phys. B, 2019, 28(8): 084201.
[5] Active hyperspectral imaging with a supercontinuum laser source in the dark
Zhongyuan Guo(郭中源), Yu Liu(刘煜), Xin Zheng(郑鑫), Ke Yin(殷科). Chin. Phys. B, 2019, 28(3): 034206.
[6] Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal
Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯). Chin. Phys. B, 2018, 27(7): 074205.
[7] Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography
Ying Wang(王莹), Qi Liu(刘琦), Jun Wang(王君), Qiong-Hua Wang(王琼华). Chin. Phys. B, 2018, 27(3): 034202.
[8] A joint image encryption and watermarking algorithm based on compressive sensing and chaotic map
Xiao Di (肖迪), Cai Hong-Kun (蔡洪坤), Zheng Hong-Ying (郑洪英). Chin. Phys. B, 2015, 24(6): 060505.
[9] Correspondence normalized ghost imaging on compressive sensing
Zhao Sheng-Mei (赵生妹), Zhuang Peng (庄鹏). Chin. Phys. B, 2014, 23(5): 054203.
No Suggested Reading articles found!