Please wait a minute...
Chinese Physics, 2003, Vol. 12(7): 759-764    DOI: 10.1088/1009-1963/12/7/311
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Modulational instability of a weakly relativistic ion acoustic wave in a warm plasma with nonthermal electrons

S. K. El-Labany, M. S. Abdel Krim, S. A. El-Warraki, W. F.El-Taibany
Physics Department, Faculty of Science-Damietta, Mansoura University, Damietta El-Gedida, Egypt
Abstract  An investigation has been made of modulational instability of a nonlinear ion acoustic wave in a weakly relativistic warm unmagnetized nonthermal plasma whose constituents are an inertial ion fluid and nonthermally distributed electrons. Up to the second order of the perturbation theory, a nonlinear Schr?dinger type (NST) equation for the complex amplitude of the perturbed ion density is obtained. The coefficients of this equation show that the relativistic effect, the finite ion temperature and the nonthermal electrons modify the condition of the modulational stability. The association between the small-wavenumber limit of the NST equation and the oscillatory solution of the Korteweg-de Varies equation, obtained by a reductive perturbation theory, is satisfied.
Keywords:  derivative expansion method      warm plasma      ion acoustic waves      modulational instability  
Received:  15 November 2002      Revised:  12 March 2003      Accepted manuscript online: 
PACS:  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.25.Kn (Thermodynamics of plasmas)  
  52.65.Vv (Perturbative methods)  

Cite this article: 

S. K. El-Labany, M. S. Abdel Krim, S. A. El-Warraki, W. F.El-Taibany Modulational instability of a weakly relativistic ion acoustic wave in a warm plasma with nonthermal electrons 2003 Chinese Physics 12 759

[1] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[2] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[3] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[4] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[5] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[6] Discrete modulational instability and bright localized spin wave modes in easy-axis weak ferromagnetic spin chains involving the next-nearest-neighbor coupling
Jiayu Xie(谢家玉), Zhihao Deng(邓志豪), Xia Chang(昌霞), Bing Tang(唐炳). Chin. Phys. B, 2019, 28(7): 077501.
[7] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[8] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[9] Modulational instability, quantum breathers and two-breathers in a frustrated ferromagnetic spin lattice under an external magnetic field
Wanhan Su(苏琬涵), Jiayu Xie(谢家玉), Tianle Wu(吴天乐), Bing Tang(唐炳). Chin. Phys. B, 2018, 27(9): 097501.
[10] Analysis of Landau damping in radially inhomogeneous plasma column
H Rajabalinia-Jelodar, M K Salem, F M Aghamir, H Zakeri-Khatir. Chin. Phys. B, 2018, 27(5): 055203.
[11] Modeling of nonlinear envelope solitons in strongly coupled dusty plasmas: Instability and collision
S. K. El-Labany, E. F. El-Shamy, W. F. El-Taibany, N. A. Zedan. Chin. Phys. B, 2015, 24(3): 035201.
[12] Relativistic degenerate effects of electrons and positrons on modulational instability of quantum ion acoustic waves in dense plasmas with two polarity ions
Liu Tie-Lu (刘铁路), Wang Yun-Liang (王云良), Lu Yan-Zhen (路彦珍). Chin. Phys. B, 2015, 24(2): 025202.
[13] Discrete energy transport in collagen molecules
Alain Mvogo, Germain H. Ben-Bolie, Timoléon C. Kofané. Chin. Phys. B, 2014, 23(9): 098701.
[14] Dynamical behaviour of transverse plasmons in pair plasmas
Liu San-Qiu(刘三秋), Liu Yong(刘勇), and Li Xiao-Qing(李晓卿). Chin. Phys. B, 2011, 20(1): 015203.
[15] Modulational instability for a self-attractive two-component Bose--Einstein condensate
Li Sheng-Chang(栗生长) and Duan Wen-Shan(段文山). Chin. Phys. B, 2009, 18(10): 4177-4181.
No Suggested Reading articles found!