|
|
Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
|
Ya-Xiong Liu(刘亚雄)1,2, Bo Zhao(赵博)1,2 |
1 Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; 2 Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China |
|
|
Abstract We present an intensive study of the coupling between different Feshbach states and the hyperfine levels of the excited states in the adiabatic creation of 23Na40K ground-state molecules. We use coupled-channel method to calculate the wave function of the Feshbach molecules, and give the short-range wave function of triplet component. The energies of the hyperfine excited states and the coupling strength between the Feshbach states and the hyperfine excited states are calculated. Our results can be used to prepare a specific hyperfine level of the rovibrational ground state to study the ultracold collisions involving molecules.
|
Received: 28 October 2019
Revised: 13 December 2019
Accepted manuscript online:
|
PACS:
|
31.15.-p
|
(Calculations and mathematical techniques in atomic and molecular physics)
|
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
33.15.Pw
|
(Fine and hyperfine structure)
|
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306502), the National Natural Science Foundation of China (Grant Nos. 11521063 and 11904355), and the Fund from the Chinese Academy of Sciences (CAS). |
Corresponding Authors:
Bo Zhao
E-mail: bozhao@ustc.edu.cn
|
Cite this article:
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博) Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
2020 Chin. Phys. B 29 023103
|
[1] |
Bergmann K, Theuer H and Shore W 1998 Rev. Mod. Phys. 70 1003
|
[2] |
Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Rev. Mod. Phys. 89 015006
|
[3] |
Ni K K, Ospelkaus S, de Miranda M H G, Péer A, Neyenhuis B, Zirbel J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
|
[4] |
Molony P K, Gregory P D, Ji Z, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M and Cornish S L 2014 Phys. Rev. Lett. 113 255301
|
[5] |
Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R and Nägerl H C 2014 Phys. Rev. Lett. 113 205301
|
[6] |
Park J W, Will S A and Zwierlein M W 2015 Phys. Rev. Lett. 114 205302
|
[7] |
Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O and Wang D 2016 Phys. Rev. Lett. 116 205303
|
[8] |
Rvachov T M, Son H, Sommer A T, Ebadi S, Park J J, Zwierlein M W, Ketterle W and Jamison A O 2017 Phys. Rev. Lett. 119 143001
|
[9] |
Seebelberg F, Buchheim N, Lu Z K, Schneider T, Luo X Y, Tiemann E, Bloch I and Gohle C 2018 Phys. Rev. A 97 013405
|
[10] |
Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B and Pan J W 2019 Science 363 261
|
[11] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
[12] |
Giorgini S, Pitaevskii L P and Stringari S 2008 Rev. Mod. Phys. 80 1215
|
[13] |
Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
|
[14] |
Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402
|
[15] |
Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C and Grimm R 2006 Nature 440 315
|
[16] |
Braaten E and Hammer H W 2006 Phys. Rep. 428 259
|
[17] |
Park J W, Wu C H, Santiago I, Tiecke T G, Will S, Ahmadi P and Zwierlein M W 2012 Phys. Rev. A 85 051602
|
[18] |
Zhu M J, Yang H, Liu L, Zhang D C, Liu Y X, Nue J, Rui J, Zhao B, Pan J W and Tiemann E 2017 Phys. Rev. A 96 062705
|
[19] |
Ishikawa K, Kumauchi T, Baba M and Katô H 1992 J. Chem. Phys. 96 6423
|
[20] |
Park J W, Will S A and Zwierlein M W 2015 New J. Phys. 17 075016
|
[21] |
Liu L, Zhang D C, Yang H, Liu Y X, Nue J, Rui J, Zhao B and Pan J W 2019 Phys. Rev. Lett. 122 253201
|
[22] |
Temelkov I, Knöckel H, Pashov A and Tiemann E 2015 Phys. Rev. A 91 032512
|
[23] |
Johnson B R 1978 J. Chem. Phys. 69 4678
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|