Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 117601    DOI: 10.1088/1674-1056/ab4cde
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of pump intensity on atomic spin relaxation in a vapor cell

Chen Yang(杨晨)1,2, Guan-Hua Zuo(左冠华)1,2, Zhuang-Zhuang Tian(田壮壮)1,2, Yu-Chi Zhang(张玉驰)3, Tian-Cai Zhang(张天才)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
Abstract  Atomic spin relaxation in a vapor cell, which can be characterized by the magnetic resonance linewidth (MRL), is an important parameter that eventually determines the sensitivity of an atomic magnetometer. In this paper, we have extensively studied how the pump intensity affects the spin relaxation. The experiment is performed with a cesium vapor cell, and the influence of the pump intensity on MRL is measured at room temperature at zero-field resonance. A simple model with five atomic levels of a Λ-like configuration is discussed theoretically, which can be used to represent the experimental process approximately, and the experimental results can be explained to some extent. Both the experimental and the theoretical results show a nonlinear broadening of the MRL when the pump intensity is increasing. The work helps to understand the mechanism of pump induced atomic spin relaxation in the atomic magnetometers.
Keywords:  atomic magnetometer      atomic spin relaxation      optical pumping  
Received:  23 August 2019      Revised:  29 September 2019      Accepted manuscript online: 
PACS:  76.60.Es (Relaxation effects)  
  78.20.Ls (Magneto-optical effects)  
  33.57.+c (Magneto-optical and electro-optical spectra and effects)  
  32.80.Xx (Level crossing and optical pumping)  
Fund: supported by the National Key R&D Program of China (Grant No. 2017YFA0304502) and the National Natural Science Foundation of China (Grant Nos. 11634008, 11674203, 11574187, and 61227902).
Corresponding Authors:  Yu-Chi Zhang, Tian-Cai Zhang     E-mail:  yczhang@sxu.edu.cn;tczhang@sxu.edu.cn

Cite this article: 

Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才) Influence of pump intensity on atomic spin relaxation in a vapor cell 2019 Chin. Phys. B 28 117601

[35] Wang M B, Zhao D F, Zhang G Y and Zhao K F 2017 Chin. Phys. B 26 100701
[36] Steck D A 2010 Cesium D Line Data available online at http://steck.us/alkalidata[2010-12-23]
[1] Budker D and Romalis M 2007 Nat. Phys. 3 227
[37] Shi Y Q, Scholtes T, Grujić Z D, Lebedev V, Dolgovskiy V and Weis A 2018 Phys. Rev. A 97 013419
[2] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[3] Bloom A L 1962 Appl. Opt. 1 61
[38] Budker D and Kimball D F 2013 Optical Magnetometry (Cambridge:Cambridge University Press) p. 91
[4] Rochester S M and Budker D 2001 Am. J. Phys. 69 450
[5] Happer W 1972 Rev. Mod. Phys. 44 169
[6] Avila G, Giordano V, Candelier V, de Clercq E, Theobald G and Cerez P 1987 Phys. Rev. A 36 3719
[7] Kitching J, Knappe S and Donley E A 2011 IEEE Sens. J. 11 1749
[8] Zhang J H, Liu Q, Zeng X J, Li J X and Sun W M 2012 Chin. Phys. Lett. 29 068501
[9] Ranjbaran M, Tehranchi M M, Hamidi S M and Khalkhali S M H 2019 J. Magn. Magn. Mater. 469 522
[10] Grosz A, Mukhopadhyay S C and Haji-Sheikh M J 2017 High Sensitivity Magnetometers (Smart Sensors, Measurement And Instrumentation) (Switzerland:Springer International Publishing) p. 429
[11] Ding Z C, Yuan J, Wang Z G, Yang K Y and Luo H 2015 Chin. Phys. B 24 083202
[12] Franzen W 1959 Phys. Rev. 115 850
[13] Hasson K C, Cates G D, Lerman K, Bogorad P and Happer W 1990 Phys. Rev. A 41 3672
[14] Franz F A and Sooriamoorthi C E 1974 Phys. Rev. A 10 126
[15] Bhaskar N D, Pietras J, Camparo J, Happer W and Liran J 1980 Phys. Rev. Lett. 44 930
[16] Beverini N, Minguzzi P and Strumia F 1971 Phys. Rev. A 4 550
[17] Seltzer S J, Rampulla D M, Rivillon-Amy S, Chabal Y J, Bernasek S L and Romalis M V 2008 J. Appl. Phys. 104 103116
[18] Gao Y, Dong H F, Wang X, Wang X F and Yin L X 2017 Chin. Phys. B 26 067801
[19] Fang J C, Li R J, Duan L H, Chen Y and Quan W 2015 Rev. Sci. Instrum. 86 073116
[20] Pustelny S, Jackson Kimball D F, Rochester S M, Yashchuk V V and Budker D 2006 Phys. Rev. A 74 063406
[21] Appelt S, Ben-Amar Baranga A, Young A R and Happer W 1999 Phys. Rev. A 59 2078
[22] Jiménez-Martínez R, Griffith W C, Knappe S, Kitching J and Prouty M 2012 J. Opt. Soc. Am. B 29 3398
[23] Ravishankar H, Chanu S R and Natarajan V 2011 Eur. Phys. Lett. 94 53002
[24] Bell W E and Bloom A L 1961 Phys. Rev. Lett. 6 280
[25] Bell W E and Bloom A L 1961 Phys. Rev. Lett. 6 623
[26] Huang H C, Dong H F, Hao H J and Hu X Y 2015 Chin. Phys. Lett. 32 098503
[27] Lucivero V G, Anielski P, Gawlik W and Mitchell M W 2014 Rev. Sci. Instrum. 85 113108
[28] Liu G B, Li X F, Sun X P, Feng J W, Ye C H and Zhou X 2013 J. Magn. Reson. 237 158
[29] Wang M L, Wang M B, Zhang G Y and Zhao K F 2016 Chin. Phys. B 25 060701
[30] Seltzer S J 2008 Developments in Alkali-Metal Atomic Magnetometry (Ph. D. Dissertation) (New Jersey:Princeton University)
[31] Balabas M V, Budker D, Kitching J, Schwindt P D D and Stalnaker J E 2006 J. Opt. Soc. Am. B 23 1001
[32] Rochester S M 2010 Modeling Nonlinear Magneto-optical Effects in Atomic Vapors (Ph. D. Dissertation) (Berkeley:UC Berkeley)
[33] Han R Q, Balabas M, Hovde C, Li W H, Roig H M, Wang T, Wickenbrock A, Zhivun E, You Z and Budker D 2017 AIP Adv. 7 125224
[34] Auzinsh M, Budker D and Rochester S M 2010 Optically Polarized Atoms, Understanding Light-atom Interactions (New York:Oxford University Press) p. 190
[35] Wang M B, Zhao D F, Zhang G Y and Zhao K F 2017 Chin. Phys. B 26 100701
[36] Steck D A 2010 Cesium D Line Data available online at http://steck.us/alkalidata[2010-12-23]
[37] Shi Y Q, Scholtes T, Grujić Z D, Lebedev V, Dolgovskiy V and Weis A 2018 Phys. Rev. A 97 013419
[38] Budker D and Kimball D F 2013 Optical Magnetometry (Cambridge:Cambridge University Press) p. 91
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[3] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[4] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[5] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[6] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[7] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[8] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[9] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[10] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[11] Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers
Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(4): 043206.
[12] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[13] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[14] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[15] Spin dynamics of magnetic resonance with parametric modulation in a potassium vapor cell
Rui Zhang(张锐), Zhi-Guo Wang(汪之国), Xiang Peng(彭翔), Wen-Hao Li(黎文浩), Song-Jian Li(李松健), Hong Guo(郭弘). Chin. Phys. B, 2017, 26(3): 030701.
No Suggested Reading articles found!