CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of pump intensity on atomic spin relaxation in a vapor cell |
Chen Yang(杨晨)1,2, Guan-Hua Zuo(左冠华)1,2, Zhuang-Zhuang Tian(田壮壮)1,2, Yu-Chi Zhang(张玉驰)3, Tian-Cai Zhang(张天才)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Atomic spin relaxation in a vapor cell, which can be characterized by the magnetic resonance linewidth (MRL), is an important parameter that eventually determines the sensitivity of an atomic magnetometer. In this paper, we have extensively studied how the pump intensity affects the spin relaxation. The experiment is performed with a cesium vapor cell, and the influence of the pump intensity on MRL is measured at room temperature at zero-field resonance. A simple model with five atomic levels of a Λ-like configuration is discussed theoretically, which can be used to represent the experimental process approximately, and the experimental results can be explained to some extent. Both the experimental and the theoretical results show a nonlinear broadening of the MRL when the pump intensity is increasing. The work helps to understand the mechanism of pump induced atomic spin relaxation in the atomic magnetometers.
|
Received: 23 August 2019
Revised: 29 September 2019
Accepted manuscript online:
|
PACS:
|
76.60.Es
|
(Relaxation effects)
|
|
78.20.Ls
|
(Magneto-optical effects)
|
|
33.57.+c
|
(Magneto-optical and electro-optical spectra and effects)
|
|
32.80.Xx
|
(Level crossing and optical pumping)
|
|
Fund: supported by the National Key R&D Program of China (Grant No. 2017YFA0304502) and the National Natural Science Foundation of China (Grant Nos. 11634008, 11674203, 11574187, and 61227902). |
Corresponding Authors:
Yu-Chi Zhang, Tian-Cai Zhang
E-mail: yczhang@sxu.edu.cn;tczhang@sxu.edu.cn
|
Cite this article:
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才) Influence of pump intensity on atomic spin relaxation in a vapor cell 2019 Chin. Phys. B 28 117601
|
[35] |
Wang M B, Zhao D F, Zhang G Y and Zhao K F 2017 Chin. Phys. B 26 100701
|
[36] |
Steck D A 2010 Cesium D Line Data available online at http://steck.us/alkalidata[2010-12-23]
|
[1] |
Budker D and Romalis M 2007 Nat. Phys. 3 227
|
[37] |
Shi Y Q, Scholtes T, Grujić Z D, Lebedev V, Dolgovskiy V and Weis A 2018 Phys. Rev. A 97 013419
|
[2] |
Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
|
[3] |
Bloom A L 1962 Appl. Opt. 1 61
|
[38] |
Budker D and Kimball D F 2013 Optical Magnetometry (Cambridge:Cambridge University Press) p. 91
|
[4] |
Rochester S M and Budker D 2001 Am. J. Phys. 69 450
|
[5] |
Happer W 1972 Rev. Mod. Phys. 44 169
|
[6] |
Avila G, Giordano V, Candelier V, de Clercq E, Theobald G and Cerez P 1987 Phys. Rev. A 36 3719
|
[7] |
Kitching J, Knappe S and Donley E A 2011 IEEE Sens. J. 11 1749
|
[8] |
Zhang J H, Liu Q, Zeng X J, Li J X and Sun W M 2012 Chin. Phys. Lett. 29 068501
|
[9] |
Ranjbaran M, Tehranchi M M, Hamidi S M and Khalkhali S M H 2019 J. Magn. Magn. Mater. 469 522
|
[10] |
Grosz A, Mukhopadhyay S C and Haji-Sheikh M J 2017 High Sensitivity Magnetometers (Smart Sensors, Measurement And Instrumentation) (Switzerland:Springer International Publishing) p. 429
|
[11] |
Ding Z C, Yuan J, Wang Z G, Yang K Y and Luo H 2015 Chin. Phys. B 24 083202
|
[12] |
Franzen W 1959 Phys. Rev. 115 850
|
[13] |
Hasson K C, Cates G D, Lerman K, Bogorad P and Happer W 1990 Phys. Rev. A 41 3672
|
[14] |
Franz F A and Sooriamoorthi C E 1974 Phys. Rev. A 10 126
|
[15] |
Bhaskar N D, Pietras J, Camparo J, Happer W and Liran J 1980 Phys. Rev. Lett. 44 930
|
[16] |
Beverini N, Minguzzi P and Strumia F 1971 Phys. Rev. A 4 550
|
[17] |
Seltzer S J, Rampulla D M, Rivillon-Amy S, Chabal Y J, Bernasek S L and Romalis M V 2008 J. Appl. Phys. 104 103116
|
[18] |
Gao Y, Dong H F, Wang X, Wang X F and Yin L X 2017 Chin. Phys. B 26 067801
|
[19] |
Fang J C, Li R J, Duan L H, Chen Y and Quan W 2015 Rev. Sci. Instrum. 86 073116
|
[20] |
Pustelny S, Jackson Kimball D F, Rochester S M, Yashchuk V V and Budker D 2006 Phys. Rev. A 74 063406
|
[21] |
Appelt S, Ben-Amar Baranga A, Young A R and Happer W 1999 Phys. Rev. A 59 2078
|
[22] |
Jiménez-Martínez R, Griffith W C, Knappe S, Kitching J and Prouty M 2012 J. Opt. Soc. Am. B 29 3398
|
[23] |
Ravishankar H, Chanu S R and Natarajan V 2011 Eur. Phys. Lett. 94 53002
|
[24] |
Bell W E and Bloom A L 1961 Phys. Rev. Lett. 6 280
|
[25] |
Bell W E and Bloom A L 1961 Phys. Rev. Lett. 6 623
|
[26] |
Huang H C, Dong H F, Hao H J and Hu X Y 2015 Chin. Phys. Lett. 32 098503
|
[27] |
Lucivero V G, Anielski P, Gawlik W and Mitchell M W 2014 Rev. Sci. Instrum. 85 113108
|
[28] |
Liu G B, Li X F, Sun X P, Feng J W, Ye C H and Zhou X 2013 J. Magn. Reson. 237 158
|
[29] |
Wang M L, Wang M B, Zhang G Y and Zhao K F 2016 Chin. Phys. B 25 060701
|
[30] |
Seltzer S J 2008 Developments in Alkali-Metal Atomic Magnetometry (Ph. D. Dissertation) (New Jersey:Princeton University)
|
[31] |
Balabas M V, Budker D, Kitching J, Schwindt P D D and Stalnaker J E 2006 J. Opt. Soc. Am. B 23 1001
|
[32] |
Rochester S M 2010 Modeling Nonlinear Magneto-optical Effects in Atomic Vapors (Ph. D. Dissertation) (Berkeley:UC Berkeley)
|
[33] |
Han R Q, Balabas M, Hovde C, Li W H, Roig H M, Wang T, Wickenbrock A, Zhivun E, You Z and Budker D 2017 AIP Adv. 7 125224
|
[34] |
Auzinsh M, Budker D and Rochester S M 2010 Optically Polarized Atoms, Understanding Light-atom Interactions (New York:Oxford University Press) p. 190
|
[35] |
Wang M B, Zhao D F, Zhang G Y and Zhao K F 2017 Chin. Phys. B 26 100701
|
[36] |
Steck D A 2010 Cesium D Line Data available online at http://steck.us/alkalidata[2010-12-23]
|
[37] |
Shi Y Q, Scholtes T, Grujić Z D, Lebedev V, Dolgovskiy V and Weis A 2018 Phys. Rev. A 97 013419
|
[38] |
Budker D and Kimball D F 2013 Optical Magnetometry (Cambridge:Cambridge University Press) p. 91
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|