|
|
Optimization of a magneto-optic trap using nanofibers |
Xin Wang(王鑫)1, Li-Jun Song(宋丽军)1, Chen-Xi Wang(王晨曦)1, Peng-Fei Zhang(张鹏飞)1,2, Gang Li(李刚)1,2, Tian-Cai Zhang(张天才)1,2 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We experimentally demonstrate a reliable method based on a nanofiber to optimize the number of cold atoms in a magneto-optical trap (MOT) and to monitor the MOT in real time. The atomic fluorescence is collected by a nanofiber with subwavelength diameter of about 400 nm. The MOT parameters are experimentally adjusted in order to match the maximum number of cold atoms provided by the fluorescence collected by the nanofiber. The maximum number of cold atoms is obtained when the intensities of the cooling and re-pumping beams are about 23.5 mW/cm2 and 7.1 mW/cm2, respectively; the detuning of the cooling beam is -13.0 MHz, and the axial magnetic gradient is about 9.7 Gauss/cm. We observe a maximum photon counting rate of nearly (4.5±0.1)×105 counts/s. The nanofiber-atom system can provide a powerful and flexible tool for sensitive atom detection and for monitoring atom-matter coupling. It can be widely used from quantum optics to quantum precision measurement.
|
Received: 28 February 2019
Revised: 07 May 2019
Accepted manuscript online:
|
PACS:
|
37.10.-x
|
(Atom, molecule, and ion cooling methods)
|
|
42.81.Qb
|
(Fiber waveguides, couplers, and arrays)
|
|
32.50.+d
|
(Fluorescence, phosphorescence (including quenching))
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502), the National Natural Science Foundation of China (Grant Nos. 11574187, 11634008, 11674203, and 61227902), and the Fund for Shanxi “1331 Project”, China. |
Corresponding Authors:
Peng-Fei Zhang, Tian-Cai Zhang
E-mail: cqedpfzhang@163.com;tczhang@sxu.edu.cn
|
Cite this article:
Xin Wang(王鑫), Li-Jun Song(宋丽军), Chen-Xi Wang(王晨曦), Peng-Fei Zhang(张鹏飞), Gang Li(李刚), Tian-Cai Zhang(张天才) Optimization of a magneto-optic trap using nanofibers 2019 Chin. Phys. B 28 073701
|
[33] |
Yalla R, Sadgrove M, Nayak K P and Hakuta K 2014 Phys. Rev. Lett. 113 143601
|
[1] |
Kien F L, Liang J Q, Hakuta K and Balykin V I 2004 Opt. Commun. 242 445
|
[34] |
Schneeweiss P, Zeiger S, Hoinkes T, Rauschenbeutel A and Volz J 2017 Opt. Lett. 42 85
|
[2] |
Nayak K P, Sadgrove M, Yalla R, Kien F L and Hakuta K 2018 J. Opt. 20 073001
|
[35] |
Cheng F, Zhang P F, Wang X and Zhang T C 2017 J. Quantum Opt. 23 74 (in Chinese)
|
[3] |
Tong L, Zi F, Guo X and Lou J 2012 Opt. Commun. 285 4641
|
[36] |
Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G and Zhang T C 2018 Opt. Express 26 31500
|
[4] |
Wu X and Tong L 2013 Nanophotonics 2 407
|
[37] |
Abraham E R I and Cornell E A 1998 Appl. Opt. 37 1762
|
[5] |
Solano P, Grover J A, Hoffman J E, Ravets S and Fatemi F K 2017 Adv. At. Mol. Opt. Phys. 66 439
|
[38] |
Zhang P F, Li G, Zhang Y C, Guo Y Q, Wang J M and Zhang T C 2009 Phys. Rev. A 80 053420
|
[6] |
Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I and Mazur E 2003 Nature 426 816
|
[39] |
Lindquist K, Stephens M and Wieman C 1992 Phys. Rev. A 46 4082
|
[7] |
Kien F L, Dutta Gupta S, Balykin V I and Hakuta K 2005 Phys. Rev. A 72 032509
|
[40] |
Hoth G W, Donley E A and Kitching J 2013 Opt. Lett. 38 661
|
[8] |
Phillips W D and Metcalf H 1982 Phys. Rev. Lett. 48 596
|
[41] |
Petrich W, Anderson M H, Ensher J R and Cornell E A 1994 J. Opt. Soc. Am. B 11 1332
|
[9] |
Chu S, Hollberg L, Bjorkholm J E, Cable A and Ashkin A 1985 Phys. Rev. Lett. 55 48
|
[42] |
Grego S, Colla M, Fioretti A, Müller J, Verkerk P and Arimondo E 1996 Opt. Commun. 132 519
|
[10] |
Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023
|
[43] |
Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
|
[11] |
Saffman M, Walker T and Molmer K 2010 Rev. Mod. Phys. 82 2313
|
[44] |
Haw M, Evetts N, Gunton W, Dongen J V, Booth J L and Madison K W 2012 J. Opt. Soc. Am. B 29 475
|
[12] |
Wang L, Zhang H and Zhang L J 2018 J. Quantum Opt. 24 178 (in Chinese)
|
[45] |
Vetsch E, Reitz D, Sague G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
|
[13] |
Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[46] |
Goban A, Choi K S, Alton D J, Ding D, Lacroute C, Pototschnig M, Thiele T, Stern N P and Kimble H J 2012 Phys. Rev. Lett. 109 033603
|
[14] |
Yang G Y, Chen L C, Mi C D, Wang P J and Zhang J 2018 J. Quantum Opt. 24 156 (in Chinese)
|
[47] |
Kato S and Aoki T 2015 Phys. Rev. Lett. 115 093603
|
[15] |
Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
|
[48] |
Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett. 114 180503
|
[16] |
Wang Y, Zheng R F, Zhang H and Zhou L 2018 J. Quantum Opt. 24 436 (in Chinese)
|
[49] |
Kimble H J 2008 Nature 453 1023
|
[17] |
Monroe C and Lukin M 2008 Phys. World 21 32
|
[18] |
Wang Y H, Yang H J, Zhang T C and Wang J M 2006 Acta Phys. Sin. 55 3403 (in Chinese)
|
[19] |
Gibble K E, Kasapi S and Chu S 1992 Opt. Lett. 17 526
|
[20] |
Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
|
[21] |
Vengalattore M, Conroy R S and Prentiss M G 2004 Phys. Rev. Lett. 92 183001
|
[22] |
Stites R, McClimans M and Bali S 2005 Opt. Commun. 248 173
|
[23] |
Lin Y W, Chou H C, Dwivedi P P, Chen Y C and Yu I A 2008 Opt. Express 16 3753
|
[24] |
Kien F L, Balykin V I and Hakuta K 2006 Phys. Rev. A 73 013819
|
[25] |
Kien F L, Balykin V I and Hakuta K 2006 Phys. Rev. A 74 033412
|
[26] |
Nayak K P, Melentiev P N, Morinaga M, Kien F L, Balykin V I and Hakuta K 2007 Opt. Express 15 5431
|
[27] |
Nayak K P and Hakuta K 2008 New J. Phys. 10 053003
|
[28] |
Sague G, Vetsch E, Alt W, Meschede D and Rauschenbeutel A 2007 Phys. Rev. Lett. 99 163602
|
[29] |
Kien F L and Hakuta K 2009 Phys. Rev. A 80 053826
|
[30] |
Nayak K P, Kien F L, Kawai Y, Hakuta K, Nakajima K, Miyazaki H and Sugimoto Y 2011 Opt. Express 19 14040
|
[31] |
Wuttke C, Becker M, Bruckner S, Rothhardt M and Rauschenbeutel A 2012 Opt. Lett. 37 1949
|
[32] |
Nayak K P and Hakuta K 2013 Opt. Express 21 2480
|
[33] |
Yalla R, Sadgrove M, Nayak K P and Hakuta K 2014 Phys. Rev. Lett. 113 143601
|
[34] |
Schneeweiss P, Zeiger S, Hoinkes T, Rauschenbeutel A and Volz J 2017 Opt. Lett. 42 85
|
[35] |
Cheng F, Zhang P F, Wang X and Zhang T C 2017 J. Quantum Opt. 23 74 (in Chinese)
|
[36] |
Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G and Zhang T C 2018 Opt. Express 26 31500
|
[37] |
Abraham E R I and Cornell E A 1998 Appl. Opt. 37 1762
|
[38] |
Zhang P F, Li G, Zhang Y C, Guo Y Q, Wang J M and Zhang T C 2009 Phys. Rev. A 80 053420
|
[39] |
Lindquist K, Stephens M and Wieman C 1992 Phys. Rev. A 46 4082
|
[40] |
Hoth G W, Donley E A and Kitching J 2013 Opt. Lett. 38 661
|
[41] |
Petrich W, Anderson M H, Ensher J R and Cornell E A 1994 J. Opt. Soc. Am. B 11 1332
|
[42] |
Grego S, Colla M, Fioretti A, Müller J, Verkerk P and Arimondo E 1996 Opt. Commun. 132 519
|
[43] |
Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
|
[44] |
Haw M, Evetts N, Gunton W, Dongen J V, Booth J L and Madison K W 2012 J. Opt. Soc. Am. B 29 475
|
[45] |
Vetsch E, Reitz D, Sague G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
|
[46] |
Goban A, Choi K S, Alton D J, Ding D, Lacroute C, Pototschnig M, Thiele T, Stern N P and Kimble H J 2012 Phys. Rev. Lett. 109 033603
|
[47] |
Kato S and Aoki T 2015 Phys. Rev. Lett. 115 093603
|
[48] |
Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett. 114 180503
|
[49] |
Kimble H J 2008 Nature 453 1023
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|