Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 073701    DOI: 10.1088/1674-1056/28/7/073701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Optimization of a magneto-optic trap using nanofibers

Xin Wang(王鑫)1, Li-Jun Song(宋丽军)1, Chen-Xi Wang(王晨曦)1, Peng-Fei Zhang(张鹏飞)1,2, Gang Li(李刚)1,2, Tian-Cai Zhang(张天才)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  

We experimentally demonstrate a reliable method based on a nanofiber to optimize the number of cold atoms in a magneto-optical trap (MOT) and to monitor the MOT in real time. The atomic fluorescence is collected by a nanofiber with subwavelength diameter of about 400 nm. The MOT parameters are experimentally adjusted in order to match the maximum number of cold atoms provided by the fluorescence collected by the nanofiber. The maximum number of cold atoms is obtained when the intensities of the cooling and re-pumping beams are about 23.5 mW/cm2 and 7.1 mW/cm2, respectively; the detuning of the cooling beam is -13.0 MHz, and the axial magnetic gradient is about 9.7 Gauss/cm. We observe a maximum photon counting rate of nearly (4.5±0.1)×105 counts/s. The nanofiber-atom system can provide a powerful and flexible tool for sensitive atom detection and for monitoring atom-matter coupling. It can be widely used from quantum optics to quantum precision measurement.

Keywords:  nanofiber      magneto-optic trap      optimization      fluorescence      efficient coupling  
Received:  28 February 2019      Revised:  07 May 2019      Accepted manuscript online: 
PACS:  37.10.-x (Atom, molecule, and ion cooling methods)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  42.50.-p (Quantum optics)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304502), the National Natural Science Foundation of China (Grant Nos. 11574187, 11634008, 11674203, and 61227902), and the Fund for Shanxi “1331 Project”, China.

Corresponding Authors:  Peng-Fei Zhang, Tian-Cai Zhang     E-mail:  cqedpfzhang@163.com;tczhang@sxu.edu.cn

Cite this article: 

Xin Wang(王鑫), Li-Jun Song(宋丽军), Chen-Xi Wang(王晨曦), Peng-Fei Zhang(张鹏飞), Gang Li(李刚), Tian-Cai Zhang(张天才) Optimization of a magneto-optic trap using nanofibers 2019 Chin. Phys. B 28 073701

[33] Yalla R, Sadgrove M, Nayak K P and Hakuta K 2014 Phys. Rev. Lett. 113 143601
[1] Kien F L, Liang J Q, Hakuta K and Balykin V I 2004 Opt. Commun. 242 445
[34] Schneeweiss P, Zeiger S, Hoinkes T, Rauschenbeutel A and Volz J 2017 Opt. Lett. 42 85
[2] Nayak K P, Sadgrove M, Yalla R, Kien F L and Hakuta K 2018 J. Opt. 20 073001
[35] Cheng F, Zhang P F, Wang X and Zhang T C 2017 J. Quantum Opt. 23 74 (in Chinese)
[3] Tong L, Zi F, Guo X and Lou J 2012 Opt. Commun. 285 4641
[36] Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G and Zhang T C 2018 Opt. Express 26 31500
[4] Wu X and Tong L 2013 Nanophotonics 2 407
[37] Abraham E R I and Cornell E A 1998 Appl. Opt. 37 1762
[5] Solano P, Grover J A, Hoffman J E, Ravets S and Fatemi F K 2017 Adv. At. Mol. Opt. Phys. 66 439
[38] Zhang P F, Li G, Zhang Y C, Guo Y Q, Wang J M and Zhang T C 2009 Phys. Rev. A 80 053420
[6] Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I and Mazur E 2003 Nature 426 816
[39] Lindquist K, Stephens M and Wieman C 1992 Phys. Rev. A 46 4082
[7] Kien F L, Dutta Gupta S, Balykin V I and Hakuta K 2005 Phys. Rev. A 72 032509
[40] Hoth G W, Donley E A and Kitching J 2013 Opt. Lett. 38 661
[8] Phillips W D and Metcalf H 1982 Phys. Rev. Lett. 48 596
[41] Petrich W, Anderson M H, Ensher J R and Cornell E A 1994 J. Opt. Soc. Am. B 11 1332
[9] Chu S, Hollberg L, Bjorkholm J E, Cable A and Ashkin A 1985 Phys. Rev. Lett. 55 48
[42] Grego S, Colla M, Fioretti A, Müller J, Verkerk P and Arimondo E 1996 Opt. Commun. 132 519
[10] Dalibard J and Cohen-Tannoudji C 1989 J. Opt. Soc. Am. B 6 2023
[43] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
[11] Saffman M, Walker T and Molmer K 2010 Rev. Mod. Phys. 82 2313
[44] Haw M, Evetts N, Gunton W, Dongen J V, Booth J L and Madison K W 2012 J. Opt. Soc. Am. B 29 475
[12] Wang L, Zhang H and Zhang L J 2018 J. Quantum Opt. 24 178 (in Chinese)
[45] Vetsch E, Reitz D, Sague G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
[13] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[46] Goban A, Choi K S, Alton D J, Ding D, Lacroute C, Pototschnig M, Thiele T, Stern N P and Kimble H J 2012 Phys. Rev. Lett. 109 033603
[14] Yang G Y, Chen L C, Mi C D, Wang P J and Zhang J 2018 J. Quantum Opt. 24 156 (in Chinese)
[47] Kato S and Aoki T 2015 Phys. Rev. Lett. 115 093603
[15] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[48] Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett. 114 180503
[16] Wang Y, Zheng R F, Zhang H and Zhou L 2018 J. Quantum Opt. 24 436 (in Chinese)
[49] Kimble H J 2008 Nature 453 1023
[17] Monroe C and Lukin M 2008 Phys. World 21 32
[18] Wang Y H, Yang H J, Zhang T C and Wang J M 2006 Acta Phys. Sin. 55 3403 (in Chinese)
[19] Gibble K E, Kasapi S and Chu S 1992 Opt. Lett. 17 526
[20] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
[21] Vengalattore M, Conroy R S and Prentiss M G 2004 Phys. Rev. Lett. 92 183001
[22] Stites R, McClimans M and Bali S 2005 Opt. Commun. 248 173
[23] Lin Y W, Chou H C, Dwivedi P P, Chen Y C and Yu I A 2008 Opt. Express 16 3753
[24] Kien F L, Balykin V I and Hakuta K 2006 Phys. Rev. A 73 013819
[25] Kien F L, Balykin V I and Hakuta K 2006 Phys. Rev. A 74 033412
[26] Nayak K P, Melentiev P N, Morinaga M, Kien F L, Balykin V I and Hakuta K 2007 Opt. Express 15 5431
[27] Nayak K P and Hakuta K 2008 New J. Phys. 10 053003
[28] Sague G, Vetsch E, Alt W, Meschede D and Rauschenbeutel A 2007 Phys. Rev. Lett. 99 163602
[29] Kien F L and Hakuta K 2009 Phys. Rev. A 80 053826
[30] Nayak K P, Kien F L, Kawai Y, Hakuta K, Nakajima K, Miyazaki H and Sugimoto Y 2011 Opt. Express 19 14040
[31] Wuttke C, Becker M, Bruckner S, Rothhardt M and Rauschenbeutel A 2012 Opt. Lett. 37 1949
[32] Nayak K P and Hakuta K 2013 Opt. Express 21 2480
[33] Yalla R, Sadgrove M, Nayak K P and Hakuta K 2014 Phys. Rev. Lett. 113 143601
[34] Schneeweiss P, Zeiger S, Hoinkes T, Rauschenbeutel A and Volz J 2017 Opt. Lett. 42 85
[35] Cheng F, Zhang P F, Wang X and Zhang T C 2017 J. Quantum Opt. 23 74 (in Chinese)
[36] Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G and Zhang T C 2018 Opt. Express 26 31500
[37] Abraham E R I and Cornell E A 1998 Appl. Opt. 37 1762
[38] Zhang P F, Li G, Zhang Y C, Guo Y Q, Wang J M and Zhang T C 2009 Phys. Rev. A 80 053420
[39] Lindquist K, Stephens M and Wieman C 1992 Phys. Rev. A 46 4082
[40] Hoth G W, Donley E A and Kitching J 2013 Opt. Lett. 38 661
[41] Petrich W, Anderson M H, Ensher J R and Cornell E A 1994 J. Opt. Soc. Am. B 11 1332
[42] Grego S, Colla M, Fioretti A, Müller J, Verkerk P and Arimondo E 1996 Opt. Commun. 132 519
[43] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1
[44] Haw M, Evetts N, Gunton W, Dongen J V, Booth J L and Madison K W 2012 J. Opt. Soc. Am. B 29 475
[45] Vetsch E, Reitz D, Sague G, Schmidt R, Dawkins S T and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
[46] Goban A, Choi K S, Alton D J, Ding D, Lacroute C, Pototschnig M, Thiele T, Stern N P and Kimble H J 2012 Phys. Rev. Lett. 109 033603
[47] Kato S and Aoki T 2015 Phys. Rev. Lett. 115 093603
[48] Gouraud B, Maxein D, Nicolas A, Morin O and Laurat J 2015 Phys. Rev. Lett. 114 180503
[49] Kimble H J 2008 Nature 453 1023
[1] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[2] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[3] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[4] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[7] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[8] Surface-enhanced fluorescence and application study based on Ag-wheat leaves
Hongwen Cao(曹红文), Liting Guo(郭立婷), Zhen Sun(孙祯), Tifeng Jiao(焦体峰), and Mingli Wang(王明利). Chin. Phys. B, 2022, 31(3): 037803.
[9] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[10] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[11] A novel natural surface-enhanced fluorescence system based on reed leaf as substrate for crystal violet trace detection
Hui-Ju Cao(曹会菊), Hong-Wen Cao(曹红文), Yue Li(李月), Zhen Sun(孙祯), Yun-Fan Yang(杨云帆), Ti-Feng Jiao(焦体峰), and Ming-Li Wang(王明利). Chin. Phys. B, 2022, 31(10): 107801.
[12] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[13] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[14] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[15] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
No Suggested Reading articles found!