Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 074101    DOI: 10.1088/1674-1056/28/7/074101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Factors influencing electromagnetic scattering from the dielectric periodic surface

Yinyu Wei(韦尹煜)1, Zhensen Wu(吴振森)1,2, Haiying Li(李海英)1, Jiaji Wu(吴家骥)3, Tan Qu(屈檀)3
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 Collaborative Innovation Center of Information Sensing and Understanding, Xidian University, Xi'an 710071, China;
3 School of Electronic Engineering, Xidian University, Xi'an 710071, China
Abstract  

The scattering characteristics of the periodic surface of infinite and finite media are investigated in detail. The Fourier expression of the scattering field of the periodic surface is obtained in terms of Huygens's principle and Floquet's theorem. Using the extended boundary condition method (EBCM) and T-matrix method, the scattering amplitude factor is solved, and the correctness of the algorithm is verified by use of the law of conservation of energy. The scattering cross section of the periodic surface in the infinitely long region is derived by improving the scattering cross section of the finite period surface. Furthermore, the effects of the incident wave parameters and the geometric structure parameters on the scattering of the periodic surface are analyzed and discussed. By reasonable approximation, the scattering calculation methods of infinite and finite long surfaces are unified. Besides, numerical results show that the dielectric constant of the periodic dielectric surface has a significant effect on the scattering rate and transmittance. The period and amplitude of the surface determine the number of scattering intensity peaks, and, together with the incident angle, influence the scattering intensity distribution.

Keywords:  periodic surface      Floquet's theorem      extended boundary condition method (EBCM)      scattering cross section      energy conservation  
Received:  08 January 2019      Revised:  02 April 2019      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  41.20.-q (Applied classical electromagnetism)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61571355, 61801349, and 61601355).

Corresponding Authors:  Zhensen Wu     E-mail:  wuzhs@mail.xidian.edu.cn

Cite this article: 

Yinyu Wei(韦尹煜), Zhensen Wu(吴振森), Haiying Li(李海英), Jiaji Wu(吴家骥), Tan Qu(屈檀) Factors influencing electromagnetic scattering from the dielectric periodic surface 2019 Chin. Phys. B 28 074101

[1] Nordam T, Letnes P A, Simonsen I and Maradudin A A 2014 J. Opt. Soc. Am. A 31 1126
[2] Tishchenko A V 2010 Opt. Photon. News 21 50
[3] Uretsky J L 1965 Ann. Phys. 33 400
[4] Desanto J A 1974 J. Acoust. Soc. Am. 56 1195
[5] Desanto J A 1981 Radio Sci. 16 1315
[6] Jordan A K and Lang R H 1979 Radio Sci. 14 1077
[7] Wang J R, Newton R W and Rouse J W 1980 IEEE Trans. Geosci. Remote Sens. GE-18 296
[8] Chuang S L and Kong J A 1981 Proc. IEEE 69 1132
[9] Chuang S L and Kong J A 1982 Radio Sci. 17 545
[10] Kong J A, Lin S L and Chuang S L 1984 IEEE Trans. Geosci. Remote Sens. GE-22 377
[11] Liu K and Hong W 1992 Int. J. Infrared Millimeter Waves 13 1647
[12] Kashihara A and Nakayama J 2006 Electron. Commun. Jpn. Part 2 89 10
[13] Nakayama J and Yoshinobu K 2003 IEICE Trans. Electr. 86 1098
[14] Nakayama J and Tsuji H 2002 IEICE Trans. Electr. 85 1808
[15] Nakayama J 2000 IEICE Trans. Electr. 88 481
[16] Welton P J 2012 J. Acoust. Soc. Am. 131 54
[17] Ge C X, Wu Z S, Bai J and Gong L 2019 Chin. Phys. B 28 024203
[18] Huang Q, Dong T L, Chen B, Li Q and Chen P 2014 J. Quant. Spectrosc. Radiat. Transfer 134 85
[19] Huang Q, Dong T, Chen B, Li Q, Tian J and Chen P 2014 J. Opt. Soc. Am. A 31 2321
[20] Reed A M, Beck R F, Griffin O M and Peltzer R D 2002 Annu. Rev. Fluid Mech. 34 469
[21] Tunaley J K, Buller E H, Wu K and Rey M T 1991 IEEE Trans. Geosci. Electron. 29 149
[22] Oumansour K, Wang Y and Saillard J 1996 IEE Proc. Radar Sonar and Nav. 143 275
[23] Zilman G, Zapolski A and Marom M 2004 IEEE Trans. Geosci. Electron. 42 2335
[24] Tings B and Velotto D 2018 Int. J. Remote Sens. 39 4451
[25] Veysoglu M E, Yueh H A, Shin R T and Kong J A 1991 J. Electromagn. Waves Appl. 5 267
[26] Longman I M 1986 Appl. Numer. Math. 2 135
[27] Kong J A 1975 Theory of Electromagnetic Waves (New York: Wiley) p. 13
[28] Tsang L, Kong J A, Ding K H and Ao C O 2004 Scattering of Electromagnetic Waves: Numerical Simulations (New York: Wiley) p. 83
[1] Zone plate design for generating annular-focused beams
Yong Chen(陈勇), Lai Wei(魏来), Qiang-Qiang Zhang(张强强), Quan-Ping Fan(范全平), Zu-Hua Yang(杨祖华), and Lei-Feng Cao(曹磊峰)†. Chin. Phys. B, 2020, 29(10): 104202.
[2] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[3] Bubble acoustical scattering cross section under multi-frequency acoustic excitation
Jie Shi(时洁), De-sen Yang(杨德森), Hao-yang Zhang(张昊阳), Sheng-guo Shi(时胜国), Song Li(李松), Bo Hu(胡博). Chin. Phys. B, 2017, 26(7): 074301.
[4] Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity
Jia-Xiang Cai(蔡加祥), Qi Hong(洪旗), Bin Yang(杨斌). Chin. Phys. B, 2017, 26(10): 100202.
[5] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Wang Jia-Lin (汪佳玲), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2015, 24(5): 050205.
[6] On the energy conservation electrostatic particle-in-cell/Monte Carlo simulation:Benchmark and application to the radio frequency discharges
Wang Hong-Yu (王虹宇), Jiang Wei (姜巍), Sun Peng (孙鹏), Kong Ling-Bao (孔令宝). Chin. Phys. B, 2014, 23(3): 035204.
[7] Electron inelastic mean free paths in solids: A theoretical approach
Siddharth H. Pandya, B. G. Vaishnav, K. N. Joshipura. Chin. Phys. B, 2012, 21(9): 093402.
[8] Difference in effect of temperature on absorption and Raman spectra between all-trans-β-carotene and all-trans-retinol
Qu Guan-Nan (曲冠男), Li Shuo (李硕), Sun Cheng-Lin (孙成林), Liu Tian-Yuan (刘天元), Wu Yong-Ling (吴咏玲), Sun Shang (孙尚), Shan Xiao-Ning (单肖宁), Men Zhi-Wei (门志伟), Chen Wei (陈伟), Li Zuo-Wei (里佐威), Gao Shu-Qin (高淑琴). Chin. Phys. B, 2012, 21(12): 127802.
[9] Fermion tunneling of charged particles from a non-static black hole in de Sitter space
Li Hui-Ling(李慧玲) and Yang Shu-Zheng(杨树政). Chin. Phys. B, 2009, 18(11): 4721-4725.
[10] The quantum tunnelling radiation of Schwarzschild de Sitter black hole with a global monopole
Chen De-You (陈德友), Jiang Qing-Quan (蒋青权), Li Hui-Ling (李慧玲), Yang Shu-Zheng (杨树政). Chin. Phys. B, 2006, 15(7): 1425-1429.
[11] Quantum tunnelling radiation of Einstein--Maxwell--Dilaton--Axion black hole
Yang Shu-Zheng (杨树政), Jiang Qing-Quan (蒋青权), Li Hui-Ling (李慧玲). Chin. Phys. B, 2005, 14(12): 2411-2414.
No Suggested Reading articles found!