Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016501    DOI: 10.1088/1674-1056/28/1/016501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons

Caiyun Wang(王彩云)1, Shuang Lu(鲁爽)2, Xiaodong Yu(于晓东)2, Haipeng Li(李海鹏)2,3
1 Editorial Board of Journal of CUMT, China University of Mining and Technology, Xuzhou 221008, China;
2 School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China;
3 Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, CO 80309, USA
Abstract  

We calculated the room-temperature phonon thermal conductivity and phonon spectrum of alkyl group-functionalized zigzag graphene nanoribbons (ZGNRs) with molecular dynamics simulations. The increase in both chain length and concentration of alkyl groups caused remarkable reduction of phonon thermal conductivity in functionalized ZGNRs. Phonon spectra analysis showed that functionalization of ZGNR with alkyl functional groups induced phonon-structural defect scattering, thus leading to the reduction of phonon thermal conductivity of ZGNR. Our study showed that surface functionalization is an effective routine to tune the phonon thermal conductivity of GNRs, which is useful in graphene thermal-related applications.

Keywords:  graphene nanoribbons (GNRs)      thermal conductivity      phonon spectrum      surface functionalization      molecular dynamics simulations  
Received:  31 August 2018      Revised:  13 October 2018      Accepted manuscript online: 
PACS:  65.80.Ck (Thermal properties of graphene)  
  63.20.kp (Phonon-defect interactions)  
  44.10.+i (Heat conduction)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11504418), China Scholarship Council Scholarship Program (Grant No. 201706425053), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2015XKMS075).

Corresponding Authors:  Haipeng Li     E-mail:  haipli@cumt.edu.cn

Cite this article: 

Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏) Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons 2019 Chin. Phys. B 28 016501

[1] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611
[2] Li H P, Bi Z T, Xu R F, Han K, Li M X, Shen X P and Wu Y X 2017 Carbon 122 756
[3] Zhou H and Zhang G 2018 Chin. Phys. B 27 034401
[4] Yang X X, Kong X T and Dai Q 2015 Acta Phys. Sin. 64 106801 (in Chinese)
[5] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[6] Ye Z Q, Cao B Y and Guo Z Y 2014 Acta Phys. Sin. 63 154704 (in Chinese)
[7] Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F and Lau C N 2008 Appl. Phys. Lett. 92 151911
[8] Li X, Maute K, Dunn M L and Yang R 2010 Phys. Rev. B 81 245318
[9] Yang P, Wang X L, Li P, Wang H, Zhang L Q and Xie F W 2012 Acta Phys. Sin. 61 076501 (in Chinese)
[10] Jiang J W, Lan J, Wang J S and Li B 2010 J. Appl. Phys. 107 054314
[11] Chen J, Zhang G and Li B 2013 Nanoscale 5 532
[12] Huang J and Han Q 2017 Mater. Res. Express 4 035041
[13] Li H P and Zhang R Q 2012 EPL 99 36001
[14] Dollfus P, Nguyen V H and Saint-Martin J 2015 J. Phys. Condens. Matter 27 133204
[15] Tran V T, Saint-Martin J, Dollfus P and Volz S 2017 Sci. Rep. 7 2313
[16] Hossain M S, Huynh D H, Nguyen P D, Jiang L, Nguyen T C, Al-Dirini F, Hossain F M and Skafidas E 2016 J. Appl. Phys. 119 125106
[17] Li H and Grossman J C 2017 Adv. Sci. 4 1600467
[18] Li H P and Zhang R Q 2018 Chin. Phys. B 27 036801
[19] Li H P, De Sarkar A and Zhang R Q 2011 EPL 96 56007
[20] Lu A J, Zhang R Q and Lee S T 2008 Nanotechnology 19 035708
[21] Li H P and Zhang R Q 2014 EPL 105 56003
[22] Liu Z, Wu X and Luo T 2017 2D Mater. 4 025002
[23] Zhang H, Fonseca A F and Cho K 2014 J. Phys. Chem. C 118 1436
[24] Sun Y, Chen L, Cui L, Zhang Y and Du X 2018 Comput. Mater. Sci. 148 176
[25] Chien S K, Yang Y T and Chen C K 2012 Carbon 50 421
[26] Wang M, Galpaya D, Lai Z B, Xu Y and Yan C 2014 Int. J. Smart Nano Mater. 5 123
[27] Cao Y, Feng J and Wu P 2010 Carbon 48 1683
[28] Patila M, Pavlidis I V, Kouloumpis A, Dimos K, Spyrou K, Katapodis P, Gournis D and Stamatis H 2016 Int. J. Biol. Macromol. 84 227
[29] Vanzo D, Bratko D and Luzar A 2012 J. Chem. Phys. 137 034707
[30] Jang J, Pham V H, Rajagopalan B, Hur S H and Chung J S 2014 Nanoscale Res. Lett. 9 265
[31] Kinaci K, Haskins J B and Çağın T 2012 J. Phys. Chem. 137 014106
[32] Müller-Plathe F A 1997 J. Chem. Phys. 106 6082
[33] Plimpton S 1995 J. Comput. Phys. 117 1
[34] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys. Condens Mater. 14 783
[35] Han T W and He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese)
[36] Pei Q X, Zhang Y W and Shenoy V B 2010 Carbon 48 898
[37] Zheng B Y, Dong H L and Chen F F 2014 Acta Phys. Sin. 63 076501 (in Chinese)
[38] Nosé S 1984 J. Chem. Phys. 81 511
[39] Hunter K C and East A L L 2002 J. Phys. Chem. A 106 1346
[40] Philpott M R and Kawazoe Y 2009 Phys. Rev. B 79 233303
[41] Xu R F, Han K and Li H P 2018 Chin. Phys. B 27 026801
[42] Dickey J M and Paskin A 1969 Phys. Rev. 188 1407
[43] Guo Z, Zhang D and Gong X G 2009 Appl. Phys. Lett. 95 163103
[44] Zhang Y Y, Pei Q X, He X Q and Mai Y W 2015 Chem. Phys. Lett. 622 104
[45] Wei N, Xu L, Wang H Q and Zheng J C 2011 Nanotechnology 22 105705
[46] Aref A H, Erfan-Niya H and Entezami A A 2016 J. Mater. Sci. 51 6824
[47] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[48] Padgett C W and Brenner D W 2004 Nano Lett. 4 1051
[49] Liu X, Zhang G, Pei Q X and Zhang Y W 2016 Mater. Today Proc. 3 2759
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[6] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[7] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[8] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[9] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[10] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[13] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[14] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[15] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
No Suggested Reading articles found!