Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(11): 117806    DOI: 10.1088/1674-1056/25/11/117806
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields

A E Ershov1,3,4, A P Gavrilyuk1,3, S V Karpov2,3,4, S P Polyutov3
1 Institute of Computational Modeling, Russian Academy of Sciences, Krasnoyarsk 660036, Russia;
2 L. V. Kirensky Institute of Physics of the Russian Academy of Sciences, Krasnoyarsk 660036, Russia;
3 Siberian Federal University, Krasnoyarsk 660028, Russia;
4 Siberian State Aerospace University, Krasnoyarsk 660037, Russia
Abstract  We have studied processes of interaction of pulsed laser radiation with resonant groups of plasmonic nanoparticles (resonant domains) in large colloidal nanoparticle aggregates having different interparticle gaps and particle size distributions. These processes are responsible for the origin of nonlinear optical effects and photochromic reactions in multiparticle aggregates. To describe photo-induced transformations in resonant domains and alterations in their absorption spectra remaining after the pulse action, we introduce the factor of spectral photomodification. Based on calculation of changes in thermodynamic, mechanical, and optical characteristics of the domains, the histograms of the spectrum photomodification factor have been obtained for various interparticle gaps, an average particle size, and the degree of polydispersity. Variations in spectra have been analyzed depending on the intensity of laser radiation and various combinations of size characteristics of domains. The obtained results can be used to predict manifestation of photochromic effects in composite materials containing different plasmonic nanoparticle aggregates in pulsed laser fields.
Keywords:  optodynamics      nanoparticle      surface plasmon      laser radiation  
Received:  11 April 2016      Revised:  06 July 2016      Accepted manuscript online: 
PACS:  78.67.Sc (Nanoaggregates; nanocomposites)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Corresponding Authors:  S V Karpov     E-mail:  karpov@iph.krasn.ru

Cite this article: 

A E Ershov, A P Gavrilyuk, S V Karpov, S P Polyutov Restructuring of plasmonic nanoparticle aggregates with arbitrary particle size distribution in pulsed laser fields 2016 Chin. Phys. B 25 117806

[1] Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin:Springer)
[2] Stockman M I 2011 Opt. Express 19 22029
[3] Shvets G and Tsukerman I 2011 Plasmonics and Plasmonic Metamaterials:Analysis and Applications (World Scientific Series in Nanoscience and Nanotechnology, Vol. 4)
[4] Shalaev V M 2000 Nonlinear Optics of Random Media:Fractal Composites and Metal-Dielectric Films(Berlin:Springer)
[5] Karpov S V and Slabko V V 2003 Optical and Photophysical Properties of Fractal-Structured Metallic Sols(Novosibirsk:Russian Academy of Sciences, Siberian Branch)
[6] Stockman M I, Pandey L N and George T F 1998 Enhanced Nonlinear-Optical Responses of Disordered Clusters and Composites in Nonlinear Optical Materials (New York:Springer)
[7] Garcia M A 2011 J. Phys. D:Appl. Phys. 44 1
[8] Monticone F and Alú A 2014 Chin. Phys. B 23 047809
[9] Li J B, He M D, Wang X J, Peng X F and Chen L Q 2014 Chin. Phys. B 23 067302
[10] Tong L, Wei H, Zhang S, Li Z and Xu H 2013 Phys. Chem. Chem. Phys. 15 4100
[11] Jiang T T, Yin N Q, Liu L, Lei J M, Zhu L X and and Xu X L 2013 Chin. Phys. B 22 126102
[12] Zolanvari A, Sadeghi H, Norouzi R and Ranjgar A 2013 Chin. Phys. Lett. 30 096201
[13] Zolanvar A, Sadeghi H and Ranjgar A 2014 Chin. Phys. Lett. 31 106201
[14] Sadeghi H, Khalili H and Goodarzi M 2012 Chin. Phys. Lett. 29 096201
[15] Zijlstra P and Orrit M 2011 Rep. Prog. Phys. 74 106401
[16] Chen W W, Li T S, He S, Liu D B, Wang Z, Zhang W and Jiang X Y 2011 Science China-Chemistry 54 1227
[17] Wei A, Xiong L, Sun L, Liu Y J and Li W W 2013 Chin. Phys. Lett. 30 46202
[18] Ding D, Yang S E, Chen Y S, Gao X Y, Gu J H and Lu J X 2015 Acta Phys. Sin. 64 248801(in Chinese)
[19] Xiong Z C, Zhu L L, Liu C, Gao S M and Zhu J Q 2015 Acta Phys. Sin. 64 247301(in Chinese)
[20] Xu T N, Li X, Jia W W, Sui C H and Wu H Z 2015 Acta Phys. Sin. 64 245201(in Chinese)
[21] Su D, Dou X M, Ding K, Wang H Y, Ni H Q, Niu Z C and Sun B Q 2015 Acta Phys. Sin. 64 235201(in Chinese)
[22] Rajwali K and Fang M H 2015 Chin. Phys. B 24 127803
[23] Shen S C, Liu W T and Diao J J 2015 Chin. Phys. B 24 127308
[24] Duan X Y and Wang Z G 2015 Chin. Phys. B 24 118106
[25] Sun G L, Zhang L S and Hang L X 2013 Physics 42 724
[26] Gavrilyuk A P and Karpov S V 2009 Appl. Phys. B 97 163
[27] Ershov A E, Gavrilyuk A P, Karpov S V and Semina P N 2014 Appl. Phys. B 115 547
[28] Karpov S V, Popov A K, Rautian S G, Safonov V P, Slabko V V, Shalaev V M and Shtokman M I 1988 JETP Lett. 48 571
[29] Danilova Y E, Rautian S G and Safonov V P 1996 Bull. Russ. Acad. Sci. Phys. 60 374
[30] Safonov V P, Shalaev V M, Markel V A, Danilova Y E, Lepeskin N N, Kim W, Rautian S G and Armstrong R L 1998 Phys. Rev. Lett. 80 1102
[31] Karpov S V, Slabko V V and Popov A K 2003 Tech. Phys. 48 749
[32] Karpov S V, Bas'ko A L, Popov A K and Slabko V V 2000 Colloid. J. 62 699
[33] Ershov A E, Gavrilyuk A P, Karpov S V and Semina P N 2015 Chin. Phys. B 24 047804
[34] Drachev V P, Perminov S V, Rautian, S G, Safonov V P and Khaliullin E N 2002 J. Exp. Theor. Phys. 94 901
[35] Drachev V P, Perminov S V and Rautian 2007 Opt. Express 15 8639
[36] Drachev V P, Perminov S V and Rautian 2008 Opt. Lett. 33 2998
[37] Markel V A, Shalaev V M, Stechel V B, Kim W and Armstrong P L 1996 Phys. Rev. B 53 2425
[38] Ershov A E, Isaev I L, Gavrilyuk A P, Karpov S V, Semina P N and Markel V A 2012 Phys. Rev. B 85 045421
[39] Rasskazov I L, Karpov S V and Markel V A 2013 Opt. Lett. 38 4743
[40] Karpov S V, Kodirov M K, Ryasnyanskii A I and Slabko V V 2001 Quantum Electronics 31 904
[41] Ganeev R A, Ryasnyansky A I, Kamalov S R, Kodirov M K and Usmanov T 2001 J. Phys. D:Appl. Phys. 34 1602
[42] Seifert G, Kaempfe M, Berg K J and Graener H 2001 Appl. Phys. B 73 355
[43] Yang G 2012 Laser Ablation in Liquids:Principles and Applications in the Preparation of Nanomaterials (New York:Pan Stanford Publishing)
[44] Plekhanov A I, Plotnikov G L and Safonov V P 1991 Opt. Spectrosc. 71 451
[45] Heard S M, Griezer F and Rarraclough C G 1983 J. Colloid. Interface Sci. 93 545
[46] Karpov S V, Gerasimov V S, Isaev I L and Obushchenko A V 2006 Colloid. J. 68 441
[47] Karpov S V, Isaev I L, Gavrilyuk A P, Gerasimov V S and Grachev A S 2009 Colloid. J. 71 313
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[6] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[7] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[8] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[9] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[10] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[11] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[12] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[13] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
No Suggested Reading articles found!