Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 044208    DOI: 10.1088/1674-1056/25/4/044208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber

Yang Xie(谢阳)1, Hai-Nian Han(韩海年)2, Long Zhang(张龙)2, Zi-Jiao Yu(于子蛟)2, Zheng Zhu(朱政)2, Lei Hou(侯磊)2, Li-Hui Pang(庞利辉)2, Zhi-Yi Wei(魏志义)2
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We demonstrate a stable Yb:fiber frequency comb with supercontinuum generation by using a specially designed tapered single-mode fiber, in which a spectrum spanning from 500 nm to 1500 nm is produced. The carrier-envelope offset signal of the Yb:fiber comb is measured with a signal-to-noise ratio of more than 40 dB and a linewidth narrower than 120 kHz. The repetition rate and carrier-envelope offset signals are simultaneously phase locked to a microwave reference frequency.

Keywords:  tapered single-mode fiber      supercontinuum generation      optical frequency comb  
Received:  25 September 2015      Revised:  03 December 2015      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.55.Wd (Fiber lasers)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: 

Project supported by the National Basic Research Program of China (973 Program) (Grant No. 2012CB821304) and the National Natural Science Foundation of China (Grant No. 61378040).

Corresponding Authors:  Hai-Nian Han, Zhi-Yi Wei     E-mail:  hnhan@iphy.ac.cn;zywei@iphy.ac.cn

Cite this article: 

Yang Xie(谢阳), Hai-Nian Han(韩海年), Long Zhang(张龙), Zi-Jiao Yu(于子蛟), Zheng Zhu(朱政), Lei Hou(侯磊), Li-Hui Pang(庞利辉), Zhi-Yi Wei(魏志义) Frequency-stabilized Yb:fiber comb with a tapered single-mode fiber 2016 Chin. Phys. B 25 044208

[1] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2000 Science 288 635
[2] Diddams S A, Jones D J, Ye J, Cundiff S T and Hall J L 2000 Phys. Rev. Lett. 84 5102
[3] Schibli T R, Minoshima K, Hong F L, Inaba H, Onae A and Matsumoto H 2004 Opt. Lett. 29 2467
[4] Bartels A, Oates C W, Hollberg L and Diddams S A 2004 Opt. Lett. 29 1081
[5] Predehl K, Grosche G, Raupach S M F, Droste S, Terra O, Alnis J, Legero Th, Hönsch T W, Udem Th, Holzwarth R and Schnatz H 2012 Science 336 441
[6] Giorgetta F R, Swann W C, Sinclair L C, Baumann E, Coddington I and Newbury N R 2013 Nat. Photon. 7 434
[7] Jian P, Pinel O, Fabre C, Lamine B and Treps N 2012 Opt. Express 20 27133
[8] Coddington I, Swann W C, Nenadovic L and Newbury N R 2009 Nat. Photon. 3 351
[9] Steinmetz T, Wilken T, Hauck C A, Holzwarth R, Hönsch T W, Pasquini L, Manescau A, Odorico S D, Murphy M T, Kentischer T, Schmidt W and Udem T 2008 Science 321 1335
[10] Wilken T, Curto G L, Probst R A. Steinmetz T, Manescau A, Pasquini L, Hernandez J I G, Rebolo R, Hönsch T W, Udem T and Holzwarth R 2012 Nature 485 611
[11] Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E and Ye J 2008 Nat. Photon. 2 355
[12] Ruehl A, Marcinkevicius A, Fermann M E and Hartl I 2010 Opt. Lett. 35 3015
[13] Cingoz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I and Ye J 2012 Nature 482 68
[14] Knight J C, Broeng J, Birks T A and Russel P S J 1998 Science 282 1476
[15] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25
[16] Birks T A and Li Y W 1992 J. Lightwave Technol. 10 432
[17] Birks T A, Wadsworth W J and Russell P S J 2000 Opt. Lett. 25 1415
[18] Zhang L, Han H N, Zhao Y Y, Hou L, Yu Z J and Wei Z Y 2014 Appl. Phys. B 117 1183
[19] Wadsworth W J, Blanch A O, Knight J C, Birks T A, Man T P M and Russell P S J 2002 J. Opt. Soc. Am. B 19 2148
[20] Tong L M, Lou J Y and Mazur E 2004 Opt. Express 12 1025
[1] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[2] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[5] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[6] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[7] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[8] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[9] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[10] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[11] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[12] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[13] Femtosecond enhancement cavity with kilowatt average power
Jin Zhang(张津), Lin-Qiang Hua(华林强), Shao-Gang Yu(余少刚), Zhong Chen(陈忠), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2019, 28(4): 044206.
[14] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[15] Photonic generation of RF and microwave signal with relative frequency instability of 10-15
Lu-Lu Yan(闫露露), Wen-Yu Zhao(赵文宇), Yan-Yan Zhang(张颜艳), Zhao-Yang Tai(邰朝阳), Pan Zhang(张攀), Bing-Jie Rao(饶冰洁), Kai Ning(宁凯), Xiao-Fei Zhang(张晓斐), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2018, 27(3): 030601.
No Suggested Reading articles found!