Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 027703    DOI: 10.1088/1674-1056/25/2/027703
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Realization of a flux-driven memtranstor at room temperature

Shi-Peng Shen(申世鹏), Da-Shan Shang(尚大山), Yi-Sheng Chai(柴一晟), Young Sun(孙阳)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

The memtranstor has been proposed to be the fourth fundamental circuit memelement in addition to the memristor, memcapacitor, and meminductor. Here, we demonstrate the memtranstor behavior at room temperature in a device made of the magnetoelectric hexaferrite (Ba0.5Sr1.5Co2Fe11AlO22) where the electric polarization is tunable by external magnetic field. This device shows a nonlinear q-φ relationship with a butterfly-shaped hysteresis loop, in agreement with the anticipated memtranstor behavior. The memtranstor, like other memelements, has a great potential in developing more advanced circuit functionalities.

Keywords:  fundamental circuit element      magnetoelectric effect      multiferroic      memtranstor      memristor  
Received:  19 December 2015      Revised:  22 December 2015      Accepted manuscript online: 
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  75.50.-y (Studies of specific magnetic materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grants Nos. 11227405, 11534015, 11274363, and 11374347), and the Natural Science Foundation from the Chinese Academy of Sciences (Grant No. XDB07030200).

Corresponding Authors:  Da-Shan Shang     E-mail:  shangdashan@iphy.ac.cn

Cite this article: 

Shi-Peng Shen(申世鹏), Da-Shan Shang(尚大山), Yi-Sheng Chai(柴一晟), Young Sun(孙阳) Realization of a flux-driven memtranstor at room temperature 2016 Chin. Phys. B 25 027703

[1] Yang J J, Strukov D B and Stewart D R 2013 Nat. Nanotechnol. 8 13
[2] Borghetti J Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
[3] Pershin Y V and Ventra M D 2011 Adv. Phys. 60 145
[4] Ventra M D and Pershin Y V 2009 Proc. IEEE 97 1717
[5] Jo S H Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[6] Ventra M D and Pershin Y V 2011 Mater. Today 14 584
[7] Prezioso M, Merrikh-Bayat F, Hoskins B D, Adam G C, Likharev K K and Strukov D B 2015 Nature 521 61
[8] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[9] Chua L O and Kang S M 1976 Proc. IEEE 64 209
[10] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[11] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[12] Shang D S, Sun J R, Shen B G and Wuttig M 2013 Chin. Phys. B 22 067202
[13] Chua L O 2011 Appl. Phys. A 102 765
[14] Vongehr S and Meng X 2015 Sci. Rep. 5 11657
[15] Mathur N D 2008 Nature 455 E13
[16] Shang D S, Chai Y S, Lu J, Cao Z X and Sun Y 2015 Chin. Phys. B 24 068402
[17] Popov Y F, Kadomtseva A M, Belov D V and Vorobev G P 1999 JETP Lett. 69 330
[18] Iyama A and Kimura T 2013 Phys. Rev. B 87 180408
[19] Ishiwata S, Taguchi Y, Murakawa H, Onose Y and Tokura Y 2008 Science 319 1643
[20] Kimura T, Lawes G and Ramirez A P 2005 Phys. Rev. Lett. 94 137201
[21] Chun S H, Chai Y S, Oh Y S, Jaiswal-Nagar D, Haam SY, Kim I, Lee B, Nam D H, Ko K T, Park J H, Chung J H and Kim K H 2010 Phys. Rev. Lett. 104 037204
[22] Shen S P, Yan L Q, Chai Y S, Cong J Z and Sun Y 2014 Appl. Phys. Lett. 104 032905
[23] Wang F, Zou T, Yang L Q, Liu Y and Sun Y 2012 Appl. Phys. Lett. 100 122901
[24] Hirose S, Haruki K, Ando A and Kimula T 2014 Appl. Phys. Lett. 104 022907
[25] Momozawa N and Yamaguchi Y 1993 J. Phys. Soc. Jpn. 62 1292
[26] Lee H B, Song J H, Chung J H, Chun S H, Chai Y S, Kim K H, Reehuis M, Prokes K and Mat'aš S 2011 Phys. Rev. B 83 144425
[27] Ishiwata S, Okuyama, Kakurai K, Nishi M, Taguchi Y and Tokura Y 2010 Phys. Rev. B 81 174418
[28] Katsura H, Nagaosa N and Balatsky A V 2005 Phys. Rev. Lett. 95 057205
[29] Sergienko I A and Dagotto E 2006 Phys. Rev. B 73 094434
[30] Tokunaga Y, Kaneko Y, Okuyama D, Ishiwata S, Arima T, Wakimoto S, Kakurai K, Taguchi Y and Tokura T 2010 Phys. Rev. Lett. 105 257201
[31] Kitagawa Y, Hiraoka Y, Honda T, Kshikura T, Nakamura H and Kimura T 2010 Nat. Mater. 9 797
[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[4] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[7] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[8] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[9] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[10] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[11] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[12] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[13] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[14] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[15] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
No Suggested Reading articles found!