Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 057305    DOI: 10.1088/1674-1056/21/5/057305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The influence and explanation of fringing-induced barrier lowering on sub-100 nm MOSFETs with high-k gate dielectrics

Ma Fei(马飞), Liu Hong-Xia(刘红侠), Kuang Qian-Wei(匡潜玮), and Fan Ji-Bin(樊继斌)
Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Material and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The fringing-induced barrier lowering (FIBL) effect of sub-100 nm MOSFETs with high-k gate dielectrics is investigated using a two-dimensional device simulator. An equivalent capacitance theory is proposed to explain the physics mechanism of the FIBL effect. The FIBL effect is enhanced and the short channel performance is degraded with increasing capacitance. Based on equivalent capacitance theory, the influences of channel length, junction depth, gate/lightly doped drain (LDD) overlap length, spacer material and spacer width on FIBL is thoroughly investigated. A stack gate dielectric is presented to suppress the FIBL effect.
Keywords:  high-k gate dielectric      fringing-induced barrier lowering      stack gate dielectric      MOSFET   
Received:  17 October 2011      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.61.Ng (Insulators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60936005 and 61076097), the Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (Grant No. 708083), and the Fundamental Research Funds for the Central Universities, China (Grant No. 20110203110012).

Cite this article: 

Ma Fei(马飞), Liu Hong-Xia(刘红侠), Kuang Qian-Wei(匡潜玮), and Fan Ji-Bin(樊继斌) The influence and explanation of fringing-induced barrier lowering on sub-100 nm MOSFETs with high-k gate dielectrics 2012 Chin. Phys. B 21 057305

[1] Tan S Y 2007 Microelectronics Journal 38 783
[2] Li J, Liu H X, Li B, Cao L and Yuan B 2010 Acta Phys. Sin. 59 8131 (in Chinese)
[3] Luan S Z, Liu H X, Jia R X, Cai N Q and Wang J 2008 Acta Phys. Sin. 57 4476 (in Chinese)
[4] Mohapatra N R, Desai M P, Narendra S G and Rao V R 2002 IEEE Trans. Electron Devices 49 826
[5] Chen Q, Wang L H and Meindl J D 2004 Solid-State Electronics 49 271
[6] Chiang T K and Chen M L 2007 Solid-State Electronics 51 387
[7] Tsui B Y and Chin L F 2004 IEEE Trans. Electron Devices 51 1733
[8] Autran J L, Munteanu D, Bescond M, Houssa M and Said A 2005 Journal of Non-Crystalline Solids 351 1897
[9] Yeap G C F, Krishnan S and Lin M R 1998 Electron. Lett. 34 1150
[10] Ma M W, Wu C H, Yang T Y, Kao K H, Wu W C, Wang S J, Chao T S and Lei T F 2007 IEEE Electron Device Letters 28 238
[11] Mohapatra N R, Desai M P and Rao V R 2003 Proceedings of the 16th International Conference on VLSI Design Washington DC, January 4--8, 2003 p. 99
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[3] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[4] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[5] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[6] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[7] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[8] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[9] A 3D SiC MOSFET with poly-silicon/SiC heterojunction diode
Sheng-Long Ran(冉胜龙), Zhi-Yong Huang(黄智勇), Sheng-Dong Hu(胡盛东), Han Yang(杨晗), Jie Jiang(江洁), and Du Zhou(周读). Chin. Phys. B, 2022, 31(1): 018504.
[10] Investigation on threshold voltage of p-channel GaN MOSFETs based on p-GaN/AlGaN/GaN heterostructure
Ruo-Han Li(李若晗), Wu-Xiong Fei(费武雄), Rui Tang(唐锐), Zhao-Xi Wu(吴照玺), Chao Duan(段超), Tao Zhang(张涛), Dan Zhu(朱丹), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087305.
[11] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[12] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[13] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
[14] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[15] Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦). Chin. Phys. B, 2020, 29(3): 038505.
No Suggested Reading articles found!